Course Project: Graph Representation and Traversal

Functional Programming

due: 2024-05-14

A graph is a data structure made up of vertices (or “nodes”) representing objects and edges representing
relations between objects. There are several varieties of graph structures. For concreteness, in the
following we will be discussing graphs in which,

e edges are directed, so an edge from x to y is distinct from an edge from y to z,
e a given ordered pair of vertices may be connected by any number of edges,
e a vertex may be connected by edges to itself.

There are several possible ways to represent the data structure of a graph. Perhaps one of the simplest
is as a list of edges, where each edge has a source vertex, a target vertex, and a collection of attribute-
value pairs. There is a standard syntax for representing graphs in this way called DOT. It is the
graph description language for a program called Graphviz, which can render graph descriptions as
diagrams. The specification of the DOT language can be found at https://graphviz.org/doc/
info/lang.html.

For this project you will use Idris to implement a data structure to represent graphs, functions to read
and write them from and to strings and files, and an algorithm to efficiently traverse them.

These tasks are intentionally less precisely specified than those in the labs and homeworks. You will
need to use good judgement and programming practice to decompose each task into parts (types,
functions, interfaces, etc.) that work together in a logical, modular, efficient, and elegant way to solve
the problem at hand.

This leaves you with quite a lot of freedom, and you may take any approach you like provided that it
conforms to the specifications and the spirit of the assignment. For example, it would violate the spirit
of the assignment if you were to find an already implemented solution online, import it, and simply
call the relevant functions. Thus, you must obtain permission from the instructor if you wish to use
modules other than those found in the standard library.

Your solution to each of the following tasks should include a comment in your source file specifying
the task number and briefly explaining the structure of your solution. If there are some parts of your
program that are likely to be confusing, are unimplemented, or that contain known bugs, you should
explain them in comments as well. In short, use good coding practice so that readers of your program
(including your future self) can understand as easily as possible how it works. In any event, your
submitted source file(s) should load without syntax or type errors.

Submit your project by pushing it to your course git repository in a directory called project. Your
submission should include a plain-text README file containing any information needed to load and run
your program as intended. Your solutions will be evaluated based on both correctness and programming
style. While there is no expectation of optimality in terms of concision and efficiency, your program
should be written clearly, making use of concepts such as interfaces and higher-order functions where
appropriate, and should not duplicate functionality needlessly.

https://graphviz.org/doc/info/lang.html
https://graphviz.org/doc/info/lang.html

Task 1
Your first task is to write a function to read a graph description in a simplified version of the DOT
language and construct the corresponding graph object if the description is well-formed:

read_graph : String -> Maybe Graph

You may represent a Graph any way you wish, but using a List of edges will probably be easiest
at this stage. The simplified DOT language that you will need to support is for representing directed
graphs using only edge specifiers. It is summarized here:

e The description should begin with the string literal digraph followed by an open brace { and
end with a close brace }.

o Between the braces there should be a semicolon-separated sequence of edge specifiers.

o Each edge specifier should consist of an alphanumeric source node name and target node name,
separated by an ASCII arrow -> and followed by an optional attribute list.

o FEach attribute list should be enclosed between brackets [and] and contain a comma-separated
sequence of key—value pairs, themselves separated by an equals sign =.

o Whitespace, including spaces, tabs and linebreaks, is permitted but not required before or after
any of the above-mentioned elements.

Here is a small example of a graph description in this simplified DOT language:

digraph

{
a -> b [label = £ , cost = 6] ;
b -> ¢ [label = g , cost = 7] ;
c -> d [label = h , cost = 8]

}
You can see how Graphviz renders this graph by pasting it into the web site https://edotor.net/.

Your graph description reader does not need to be able to recognize and reject invalid graph descriptions
in the simplified DOT language; however, it should be able to recognize and accept valid graph
descriptions.

Next, write a function that reads a simple graph description from a .dot file:

read_dot_file : (path : String) -> IO (Either FileError (Maybe Graph))

Task 2
Your next task is to write a function to take a graph in whatever representation you have chosen and
write a description of it in the simplified DOT language:

write_graph : Graph -> String

The graph descriptions that your writer emits should be valid Graphviz inputs. At this point you
should test your reader and writer to ensure that if you read a valid graph description and then write
the graph that you build from it, the result is itself a valid description of the same graph. Note that

it need not be the same description of this graph, as, for example, the text spacing and order of edges
may differ.

Next, write a function that writes a simple graph description to a .dot file:

write_dot_file : Graph -> (path : String) -> IO (Either FileError Unit)

https://edotor.net/

Task 3

Your next task is to write a function that takes a graph and a designated “start” node and computes
a subgraph of the input graph that includes just those edges that give a shortest path from the start
node to each node in the input graph that is reachable from the start node.

shortest_paths : (start : Node) -> Graph -> Graph
This requires a bit of explanation.

A subgraph of a given graph consists of a subset of its nodes together with a subset of its edges, subject
to the constraint that if an edge is included then so are its boundary nodes. When we represent graphs
as edge lists this constraint is satisfied automatically.

A path in a graph is a finite sequence of consecutive edges, where two edges are consecutive if the
target node of the first is the source node of the second. For example, in the graph from task 1 we
have a path from a tod given by £ ; g ; h.

In order to have a notion of “shortest path” we need a notion of “edge length”. This is not necessarily
intended to represent a geometric quantity, so we instead call it a cost, which may represent distance,
time, currency, etc.. The cost of a path is the sum of the costs of its constituent edges. For example,
the cost of the path £ ; g ; h above is 21.

For what follows it is important that costs be non-negative. This is because we will need the cost of a
path to be no greater than that of any path that extends it. For example, it should be the case that
the cost of the path £ ; g ; h is no greater than the cost of the path £ ; g ; h ; i, regardless
of what cost of the edge i is. In this task you may assume that the cost attribute of an edge specifier
in a graph description is given as a natural number.

If an edge specifier does not include a cost attribute, or if the cost attribute of an edge cannot be
parsed as a natural number, then we should consider the cost of that edge to be undefined. Only edges
with well-defined costs should appear in the result of the shortest_paths function.

There is simple algorithm for computing the shortest_paths function due to Dijkstra. Using the
input graph, an “explored” subgraph of it, and a dictionary of node costs for the explored subgraph,
we do the following.

o Determine an edge of the input graph whose source node is explored (and thus has known cost),
whose target node is unexplored (and thus has unknown cost), and such that the cost of the source
node plus the cost of the edge is minimal for edges from an explored node to an unexplored node.

o Add this edge to the explored subgraph and its target node to the cost dictionary, assigning it a
cost of the sum of those of the edge and its source node.

The process begins with the explored subgraph containing just the start node and the node cost
dictionary assigning the start node a cost of 0. The process ends when we can no longer choose an
edge with explored source node, unexplored target node, and well-defined cost. At this point we just
return the explored subgraph.

The algorithm works because if at some stage we choose an edge e : x -> vy, it is because the cost of
the node x plus the cost of the edge e is minimal for all edges from an explored node to an unexplored
node. Thus the cost of getting to y using e can be no greater than the cost of getting to y any other
way, and we have found a shortest path from the start node to y. This process terminates because the
graph is finite and at each stage we reduce the size of the unexplored portion by one node.

https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm

