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This week we are learning about the propositions as types interpretation of logic. Under this interpre-
tation we can regard a type as a logical proposition, and regard an element of such a type as a proof of
the corresponding proposition. This allows us to represent propositions and proofs as data within our
programs, which we can analyze and manipulate, just like any other data.

An important tool for proving propositions about inductively-defined data is proof by induction. Under
the propositions as types interpretation this corresponds to the familiar notion of a recursive function.
In order for such an inductive proof to be valid the corresponding recursive function must be total.
We can enforce totality checking for a file using the Idris directive %default total.

One strategy that is often helpful when writing proofs in Idris is to explicitly bind implicit arguments
in the clauses of a definition, either on the left or on the right of the defining =. This is useful when
Idris makes a bad choice for naming a variable in an implicit argument (for example, by shadowing
another variable), or when Idris doesn’t have enough information to correctly infer the type of a goal
that we are working on. Once a proof is complete we may choose to erase such bindings if they can
be inferred by Idris because the names no longer matter.

To complete this lab you should import the module Lecture10 that we developed interactively in
class. You will also need to import Data.Nat in order to use the type constructor LTE.

LTE and Addition
In class we proved that LTE is a reflexive and transitive relation on the natural numbers. Now we will
explore how this relation interacts with the operation of addition.

Task 1
As a warm-up, prove that every natural number is less than or equal to its own successor:
succ_larger : {n : Nat} -> LTE n (S n)

You should do this by induction on the natural number n, which you can bring into scope by explicitly
binding the implicit argument using the notation {n = n} on the left side of a clause.

Task 2
Use the fact that you proved in task 1 together with the transitivity of LTE, which was proved in class,
in order to prove the following “weakening lemmas” about LTE:
lte_weaken_right : {m , n : Nat} -> LTE m n -> LTE m (S n)

lte_weaken_left : {m , n : Nat} -> LTE (S m) n -> LTE m n
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Task 3
Now prove the following facts about adding zero on the right or on the left:
zero_plus_right : (m , n : Nat) -> LTE (m + 0) (m + n)

zero_plus_left : (m , n : Nat) -> LTE (0 + n) (m + n)

As you examine the intermediate proof states, recall that addition of natural numbers is defined
recursively on the first argument (:printdef plus), so that as far as Idris is concerned 0 + n and
n are interchangeable, and likewise, S m + n and S (m + n) are interchangeable.

Task 4
Next, prove the following facts about adding a successor on the right or on the left:
succ_plus_right : (m , n : Nat) -> LTE (m + n) (m + S n)

succ_plus_left : (m , n : Nat) -> LTE (m + n) (S m + n)

Exponentiating an Even Number
In class we proved that the sum and product of two even natural numbers is even. Here we consider
exponentiation. Without thinking too hard, we might believe that for any 𝑛, if 𝑚 is even then the
exponential 𝑚𝑛 is even too. This is almost true, except when 𝑛 is 0.

We begin by defining a predicate for positive numbers as a Nat-indexed type:
data Positive : Nat -> Type where

One_positive : Positive 1
S_positive : Positive n -> Positive (S n)

which we can think of as follows:

0 1 2 3 : (n : Nat)
S S S

...

One_positive
S_positive

One_positive

S_positive
(S_positive

One_positive) : Positive n

The type Positive 0 is empty, the type Positive 1 is a singleton containing the element One_positive,
and every type Positive (S (S n)) is a singleton containing the result of applying the function
S_positive to the sole inhabitant of the type Positive (S n).

We can use this type together with Even to express the proposition that we wish to prove: if 𝑚 is
even and 𝑛 is positive then 𝑚𝑛 is even. This should go smoothly, except for one wrinkle.

Task 5
Because we don’t yet know how to tell Idris about equality, we will need the following obvious lemma,
which you should now prove:
even_times_one : Even n -> Even (n * 1)

We are now ready to prove that a positive power of an even number is even. Usually the easiest way
to prove a property about a recursively defined object is to try to follow its recursive structure in the
structure of your proof. Examine the recursive structure of the exponentiation function on natural
numbers with :printdef power. On which argument is it recursive?
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Task 6
Write a proof of the theorem that a positive power of an even number is even by induction on the
assumption corresponding to the recursive argument in the function power.
pow_even_pos : Even m -> Positive n -> Even (power m n)
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