
Lab 8

Functional Programming

2024-04-05

This week we are learning about algebraic interfaces. These are interfaces whose implementations are
expected to satisfy certain properties. For example, the Eq method (==) : Eq a => a -> a -
> Bool should be an equivalence relation (i.e., reflexive, symmetric, and transitive).

We met two new interfaces for types. A semigroup is a type a with an associative combining operation
(<+>) : Semigroup a => a -> a -> a. If this combining operation has a neutral element then
the semigroup is a monoid. Monoids are useful because they let us combine any finite sequence of
things into a single thing.

We also met three new interfaces for type constructors. A functor is a type constructor t : Type
-> Type that allows us to map a function over it using the method map : Functor t => (a -
> b) -> t a -> t b. The functor laws say that mapping must respect the composition structure
of functions. A functor is applicative if it has methods pure : Applicative t => a -> t
a and (<*>) : Applicative t => t (a -> b) -> t a -> t b that satisfy sensible laws.
A monad is an applicative functor with the interdefinable methods join : Monad t => t (t
a) -> t a and (>>=) : Monad t => t a -> (a -> t b) -> t b that behave reasonably.
Because do-notation is syntactic sugar for (>>=), we can use it not only for IO, but for any monad.

Task 1
Write down some properties that you expect implementations of the Ord interface to satisfy.

Task 2
Confirm for yourself that the exclusive-or operation (see lab 2) is associative. Then write a semigroup
implementation for the booleans, where the combining operation is exclusive-or.
implementation Semigroup Bool where

Extend this to a monoid implementation.
implementation Monoid Bool where

Task 3
An endomorphism is a function from a type to itself. Write a semigroup implementation for the type
of endomorphisms on an arbitrary type:
implementation Semigroup (a -> a) where

Extend this to a monoid implementation:
implementation Monoid (a -> a) where

so that, for example:
Lab8> ( * 2) <+> ( + 1) $ 3
7

1



Lab8> ( + 1) <+> neutral <+> ( * 2) $ 3
8

Task 4
Write a function that combines a monoid element with itself a given number of times:
multiply : Monoid a => Nat -> a -> a

For example:
Lab8> multiply 3 "hello"
"hellohellohello"
Lab8> multiply 3 [1, 2]
[1, 2, 1, 2, 1, 2]
Lab8> multiply 3 True
True
Lab8> multiply 4 True
False
Lab8> multiply 3 ( * 2) 5
40

Task 5
Use structural recursion to write the following function that returns Just a list of things just in case
all of the argument list elements are Just things.
consolidate : List (Maybe a) -> Maybe (List a)

For example:
Lab8> consolidate [Just 1, Just 2, Just 3]
Just [1, 2, 3]
Lab8> consolidate [Just 1, Nothing, Just 3]
Nothing
Lab8> consolidate []
Just []

Now analyze the definition that you wrote and rewrite it as consolidate' using the fact that
Maybe is a Functor. This will allow you to avoid performing case analysis in the recursive clause
(the base-case clauses will remain unchanged). If you need a hint, refer to Lecture8.update'.

Task 6
Recall that in lecture 8 we wrote the arity 2 mapping function for applicative functor types:
map2 : Applicative t => (a -> b -> c) -> t a -> t b -> t c

Write the arity 1 mapping function for applicative functor types:
map1 : Applicative t => (a -> b) -> t a -> t b

Your definition of map1 f x should be an expression involving only f, x, pure, and <*>.

Write the arity 0 mapping function for applicative functor types:
map0 : Applicative t => a -> t a

Your definition of map0 x should be an expression involving only x, pure, and <*>.

Challenge: Write the type and definition for map3, and try to identify the general pattern for map𝑛.

2



Task 7
Try to guess the value of each of the following expressions; then ask Idris to evaluate them to see if
your prediction was correct:

• the (List _) $ map0 3

• the (List _) $ map1 ( `mod` 2 == 0) [1, 2, 3]

• the (List _) $ map2 MkPair [1,2,3] ['a','b','c']

Describe in words what map2 does for the applicative functor List.

Task 8
Write a higher-order function that uses a given function to transform the element at the specified index
of a list:
transform : (f : a -> a) -> (index : Nat) -> List a -> List a

If the index is out-of-bounds for the list then your function should behave like the identity function.
For example:
Lab8> transform S 0 [1, 2]
[2, 2]
Lab8> transform S 1 [1, 2]
[1, 3]
Lab8> transform S 3 [1, 2]
[1, 2]

Now import Data.String and use your transform function, together with the following standard
library functions (:doc them!),

• words : String -> List String,

• unwords : List String -> String,

• unpack : String -> List Char,

• pack : List Char -> String,

• toUpper : Char -> Char.

to write a function that capitalizes the first letter of each word in a string:
titlecase : String -> String

For example:
Lab8> titlecase "it was the best of times it was the worst of times."
"It Was The Best Of Times It Was The Worst Of Times."

Note: You can (and should!) write this function as a point-free one-liner, using the fact that List is
a Functor. Here is a hint to get you started:
titlecase = unwords . ?goal . words

3


