Lab 6

Functional Programming

2024-03-01

This week we learned how to do monadic I/O in typed purely functional programming languages.
Unlike imperative programming languages these do not use statements to cause effects. Instead, some
expressions represent computations, which are instructions to the run-time system to perform various
actions. These are distinguished in the type system by being elements of I0 types. An element of type
I0 a is a computation that when run may perform some actions and then returns a result of type a.

We build up compound computations using two monadic combinators, pure : a -> IO a, which
produces a trivial computation, and (>>=) : IO a -> (a -> IO b) -> IO b, whichsequences
computations by running the first and passing the resulting value to the next.

There is syntactic sugar called do-notation, in which a sequence of computations can be written to
resemble a block of statements in an imperative programming language. This can be convenient, but
it is important to understand that it is merely a syntactic transformation.

When :execing a computation in the interactive interpreter, you can see a textural representation of
its result by sequencing it with printLn : Show a => a -> IO Unit

Task 1
Write a computation that doesn’t give up until it gets a number from the user.

get_number : IO Integer

For example:

Lab6> :exec get_number >>= printLn

Please enter a number: forty two

I'm sorry, I didn't understand that.

Please enter a number: You know, the answer to life, the universe and everything.
I'm sorry, I didn't understand that.

Please enter a number: 42

42

Task 2
Desugar the following computation to explicitly use the sequencing operator (>>=) rather than do-
notation:

add_pair : IO Integer

add_pair = do
putStr "What is the first number? "
x <- get_number
putStr "What is the second number? "
y <- get_number
pure (x + y)



Task 3
Write a checked version of get_numbers, which prompts the user to re-enter their input if it is unable
to parse an integer from it.

get_numbers_checked : IO (List Integer)

For example:

Lab6> :exec get_numbers_checked >>= printLn
Please enter a number or 'done': 1

Please enter a number or 'done': two

I'm sorry, I didn't understand that.

Please enter a number or 'done': 2
Please enter a number or 'done': 3
Please enter a number or 'done': done
[1, 2, 3]

Task 4

Write a computation that gets a list of numbers from the user and returns their sum, or zero if the list
is empty.

add_numbers : IO Integer

For example:

Lab6> :exec add_numbers >>= printLn
Please enter a number: 1

Please enter a number: 2

Please enter a number: 3

Please enter a number: done

6

Hint: you can write this as a point-free one-liner using get_numbers from lecture together with
computation sequencing, function composition, and the fold for lists, which you can find in the standard
library as:

foldr : (¢ : a ->t ->t) -> (n : t) -> List a -> t

Task 5

Write a function that takes both a computation that when run produces a result of type a and a
computation that when run produces a result of type b, and returns a computation that when run,
runs the two computations in that order and produces the pair of their results:

bothI0O : IO a -> IO b -> IO (Pair a b)

Now write a function bothIO' that has the same type as bothIO, but which runs the two argument
computations in the opposite order:

Lab6> :exec bothIO (putStrLn "hello") (putStrLn "world")
hello
world
Lab6> :exec bothIO' (putStrLn "hello") (putStrLn "world")
world
hello



Task 6

Write a function that takes a string transformer function and paths to a source and target file, which
reads the contents of the source file, transforms it by the function, and writes the result to the target
file.

transform_file : (transform : String -> String) ->
(src_path : String) -> (tgt_path : String) ->
I0 (Either FileError Unit)

You can read the contents of a file using

readFile : String -> IO (Either FileError String)
and write the contents of a file using one of
writeFile , appendFile : String -> String -> IO (Either FileError Unit)

which you can use by importing the System.File module.

Note: You can use Data.String.toUpper : String -> String to test your function.
Be careful not to overwrite any important files on your system.



