Lab 5

Functional Programming

2024-02-23

This week we are learning about programming interfaces. An Idris interface is similar to a Haskell
typeclass, a Rust trait, or a Java abstract class. An interface serves as a constraint on a collection of
types or type constructors. The elements of an interface are its methods. To implement an interface
we must provide definitions for a basis of its methods.

We saw how to define and implement interfaces and learned about the following interfaces from the
standard library:

e Show: for types whose elements have a string representation

e Num: for numeric types

e Eq: for types whose elements can be compared for equality

e 0xd: for types whose elements can be ordered

e Cast: for transforming elements of one type into elements of another

We also saw how to define and invoke named implementations of an iterface and how to use the function
the : (0 a : Type) -> a -> a to disambiguate types in the interactive interpreter.

Task 1
Recall the Shape type from week 2. Write a Show implementation for Shapes so that:

Lab5> show $ Circle 5

"Circle with radius 5.0"

Lab5> show $ Rectangle 3 4

"Rectangle with width 3.0 and height 4.0"

Lab5> show $ IsosTriangle 2 2

"Isosceles triangle with base 2.0 and height 2.0"
Lab5> show $ RegularPolygon 5 (7/2)

"Regular 5-gon with side length 3.5"

Task 2
Recall the RExp type constructor for arithmetic expressions from week 5. Write an evaluator for
arithmetic expressions over numeric types:

eval : Num a => AExp a -> a

For example:

Lab5> eval $ Val 2 ‘Plus® Val 2

4

Lab5> eval $ Val 2 “Times® (Val 3 “Plus’ Val 4)
14

Task 3

The implementation of the Eq interface for arithmetic expressions that we wrote in class compares
expressions structurally. Write an implementation of the Eq interface for arithmetic expressions over
numeric types that instead compares them by value:

Lab5> (Val 40 "Plus” Val 2) == (Val 6 "Times Val 7)
True

Lab5> val 0 == val 1

False

Hint: use your eval function.

Task 4
Write an implementation of the Ord interface for arithmetic expressions over numeric types that orders
them according to their values:

Lab5> Val 3 <= Val 3

True

Lab5> compare (Val 1) (val 2)

LT

Lab5> max (Val 3 "Plus® Val 2) (Val 3 “Times' Val 2)
Times (Val 3) (val 2)

Hint: you only need to implement one method.

Task 5
The default implementation of the Eq interface for List types compares lists for equality element-wise:

Labs> (==) [1,2,3] [1,2,3]

Txrue

Lab5> (==) [1,2,3] [3,2,2,1]
False

Lab5> (==) [1,2,3] [1,2,4]
False

Write a named implementation of the Eq interface for List types that compares them set-wise:

implementation [setwise] Eq a => Eq (List a) where

that is, two lists should be considered equal just in case each element that occurs (at least once) in
one list also occurs (at least once) in the other list:

Lab5> (==) @{setwise} [1,2,3] [1,2,3]

True

Lab5> (==) @{setwise} [1,2,3] [3,2,2,1]
True

Lab5> (==) @{setwise} [1,2,3] [1,2,4]
False

Hint: the following standard library functions may be helpful:
e elem : Eq a => a -> List a -> Bool

e all : (a -> Bool) -> List a -> Bool

Task 6
In class this week we saw how to write the quicksort algorithm recursively. A key component of the
mergesort algorithm is the following function:

merge_list : Ord a => List a -> List a -> List a

which combines two lists into one so that the head of the result list is the smaller of the heads of the
two argument lists, and the tail of the result list is the result of recursively merging the remainder of
the two argument lists. This has the effect that, if the two argument lists are already sorted then the
result list will also be sorted. Write the merge_1list function so that:

Lab5> merge_list [] [1,3,2]
(1, 3, 2]

Lab5> merge_list [1,3,2] []
(1, 3, 2]

Lab5> merge_list [1,4] [2,3]
(1, 2, 3, 4]

Lab5> merge_list [4,1] [3,2]
[37 27 47 1]

Task 7
In Lab 3 you defined a type isomorphism between the types Nat and List Unit. Define lossless
Cast implementations back and forth between these two types.

