Lab 4

Functional Programming

2024-02-16

This week we learned about function literals and higher-order functions. A function literal is a free-
standing expression representing a value of a function type. We write the function with formal param-
eter x and body t using the (ASCIIfied) X notation “\ x => t”. For example, the generic identity
function with type a -> a can be written as “\ x => x”. For convenience, we can use section
notation for infix operators, leaving away either or both operands.

A higher-order function is a function that traffics in other functions, either taking them as arguments
or returning them as results. We saw how the map, filter, and zip functions for List types allow
us to perform tasks that would typically be done using loops in imperative programming languages,
and how the fold function for an inductive type reifies its recursion principle as an ordinary function.

Task 1
Work out for yourself the types and values of the following expressions involving Lecture2.is_even.

(map S . filter is_even) [0, 1, 2, 3]
(filter is_even . map S) [0, 1, 2, 3]

Then check your understanding by asking Idris to evaluate them for you.

Task 2
Write the map function for Maybe types,

map_maybe : (a -> b) -> Maybe a -> Maybe b
so that:

Lab4> map_maybe (2 % ) Nothing
Nothing

Lab4> map_maybe (2 % ) (Just 21)
Just 42

Task 3
Use a function literal (A-expression) to complete the following function that returns the numbers in a
list that are multiples of 10:

round_numbers : List Integer -> List Integer
round_numbers = filter ?p

For example:

Lab4> round_numbers [5,10,15,20]
[10, 20]

Hint: the functions mod and (==) will be helpful.



Task 4
Write the generic higher-order function,

iterate : Nat -> (a -> a) -> a -> a

that composes the given function with itself the given number of times.
For example:

Lab4> iterate 3 (2 % ) 1

8

Lab4> iterate 8 ("Na" ++ ) " Batman!"
"NaNaNaNaNaNaNaNa Batman!"

Task 5
Use recursion to write a function that adds together all the numbers in a list:

sum_list : List Integer -> Integer

For example,

Lab4> sum_list [1, 2, 3]

6

Lab4> sum_list []

(0]

Task 6

Recall that the fold function for list types reifies the pattern of list-recursion as a function:
fold_1ist : (¢ : a ->t ->t) -> (n : t) -> List a -> t

fold_1list ¢ n [] = n

fold_list ¢ n (x :: xs) = ¢ x (fold_list c n xs)

The idea is that the element constructors for list types, (::) : a -> List a -> List a and

Nil : List a, have the “shapes”:

a List a

and Nil

List a List a

So that in any diagram made up of (::)s and Nils, representing an element of type List a, if we
uniformly replace them with respectively:

a t

and (P

t t

then we obtain a diagram with the same “shape” representing an element of type t.
Use the fold for list types to rewrite the list-summing function as a one-liner:

sum_list' : List Integer -> Integer
sum_list' = fold_list ?c ?n



Task 7
Write the fold function for the Bool type, fold_bool.

o First determine the type of this function using the algorithm described in class.
e Then write the function definition using the algorithm for that.

Up to argument order, you should recognize this function as a construct present in nearly every
programming language, what is it? Idris also supports the conventional syntax for this construct, try
it out.



