
Lab 3

Functional Programming

2024-02-09

This week we learned about parameterized type families, also known as type constructors. These have
types Type -> ... -> Type. For example, the List and Maybe type constructors each take one
type parameter, and thus have type Type -> Type; while the Pair and Either type constructors
each take two type parameters, and thus have type Type -> Type -> Type.

We also learned how to write generic functions, which act uniformly on the types of such families.
We saw how to use implicit arguments to avoid having to explicitly provide inferable type arguments,
and how to use implicit binding to shorten the way that we write type specifications involving implicit
arguments. Recall that the quantity 0 is used to indicate that we treat a type generically, and that
implicit binding elaboration inserts this for us automatically.

By default, Idris suppresses generic implicit arguments when displaying types. However, we can use
the REPL command :ti in order to see the full type of an expression, including all implicit arguments.

Task 1
Write any function of the following type:

swap_pair : Pair a b -> Pair b a

Hint: Recall that this type elaborates to:

{0 a : Type} -> {0 b : Type} -> Pair a b -> Pair b a

so any function you write must be generic in both a and b.

Task 2
Write any function of the following type:

swap_either : Either a b -> Either b a

Question: Did you have any choice in the function definitions you wrote in tasks 1 and 2?

Task 3
Write a generic function

reverse_list : List a -> List a

that reverses the order of the elements of a list; for example:

Lab3> reverse_list []
[]
Lab3> reverse_list [1]
[1]
Lab3> reverse_list [1, 2]

1



[2, 1]
Lab3> reverse_list [1, 2, 3]
[3, 2, 1]

Hint: Use recursion on the argument list. The list concatenation function that we wrote this week in
lecture will be helpful. It is also in the standard library as

Prelude.List.(++) : List a -> List a -> List a

Task 4
The following type constructor defines node-labeled binary trees or just “trees” for short.

data Tree : (a : Type) -> Type where
-- a tree is either empty:
Leaf : Tree a
-- or it is a left subtree, a current element, and a right subtree:
Node : (l : Tree a) -> (x : a) -> (r : Tree a) -> Tree a

It is customary to draw trees as downward-growing diagrams. For example, the Tree Nat

t1 = Node (Node Leaf 1 (Node Leaf 3 Leaf)) 5 Leaf

can be drawn as: 5

1

* 3

* *

*

, where the *s represent leaves. We may also omit the leaves: 5

1

3

.

Enter the definition of the Tree type constructor into your lab file and write the definition of t2 :
Tree Nat with the following structure: 4

2

1 3

6

5 7

.

Hint: If the term you are trying to write gets too unwieldy you can use local definitions (let bindings)
to divide it into more manageable pieces.

Task 5
Write a generic function

size : Tree a -> Nat

that counts the number of nodes in a tree; for example:

Lab3> size t1
3
Lab3> size t2
7

Task 6
A type isomorphism is a pair of back-and-forth functions between two types, f : a -> b and g
: b -> a, such that if we apply either one to the result of applying the other then we get back

2



the original argument; that is, for any x : a and y : b we have that g (f x) evaluates to x and
f (g y) evaluates to y.

Write a type isomorphism between the types Nat and List Unit; that is, write functions

n_to_lu : Nat -> List Unit

lu_to_n : List Unit -> Nat

so that, for example:

Lab3> lu_to_n (n_to_lu 0)
0
Lab3> lu_to_n (n_to_lu 1)
1
Lab3> lu_to_n (n_to_lu 3)
3
Lab3> n_to_lu (lu_to_n [])
[]
Lab3> n_to_lu (lu_to_n [()])
[()]
Lab3> n_to_lu (lu_to_n [(), (), ()])
[(), (), ()]

3


