Lab 3

Functional Programming

2024-02-09

This week we learned about parameterized type families, also known as type constructors. These have types Type -> ... -> Type. For example, the List and Maybe type constructors each take one type parameter, and thus have type Type -> Type; while the Pair and Either type constructors each take two type parameters, and thus have type Type -> Type -> Type.

We also learned how to write *generic functions*, which act *uniformly* on the types of such families. We saw how to use *implicit arguments* to avoid having to explicitly provide inferable type arguments, and how to use *implicit binding* to shorten the way that we write type specifications involving implicit arguments. Recall that the *quantity* $\mathbf{0}$ is used to indicate that we treat a type generically, and that implicit binding elaboration inserts this for us automatically.

By default, Idris suppresses generic implicit arguments when displaying types. However, we can use the REPL command: in order to see the full type of an expression, including all implicit arguments.

Task 1

Write any function of the following type:

```
swap_pair : Pair a b -> Pair b a
```

Hint: Recall that this type elaborates to:

```
{O a : Type} -> {O b : Type} -> Pair a b -> Pair b a
```

so any function you write must be generic in both a and b.

Task 2

Write any function of the following type:

```
swap_either : Either a b -> Either b a
```

Question: Did you have any choice in the function definitions you wrote in tasks 1 and 2?

Task 3

Write a generic function

```
reverse_list : List a -> List a
```

that reverses the order of the elements of a list; for example:

```
Lab3> reverse_list []
[]
Lab3> reverse_list [1]
[1]
Lab3> reverse_list [1, 2]
```

```
[2, 1]
Lab3> reverse_list [1, 2, 3]
[3, 2, 1]
```

Hint: Use recursion on the argument list. The *list concatenation* function that we wrote this week in lecture will be helpful. It is also in the standard library as

```
Prelude.List.(++) : List a -> List a -> List a
```

Task 4

The following type constructor defines node-labeled binary trees or just "trees" for short.

```
data Tree : (a : Type) -> Type where
  -- a tree is either empty:
  Leaf : Tree a
  -- or it is a left subtree, a current element, and a right subtree:
  Node : (l : Tree a) -> (x : a) -> (r : Tree a) -> Tree a
```

It is customary to draw trees as downward-growing diagrams. For example, the Tree Nat

can be drawn as: 5 , where the $\star s$ represent leaves. We may also omit the leaves: 5 , where the $\star s$ represent leaves. We may also omit the leaves: 5 , where the $\star s$ represent leaves. We may also omit the leaves: 5 , where $\star s$ is 5 in 5 is 5 is 5 is 5 is 5 in 5 is 5 in 5 is 5 in 5 in

Enter the definition of the Tree type constructor into your lab file and write the definition of t2:

Tree Nat with the following structure:

4

2
6

Hint: If the term you are trying to write gets too unwieldy you can use local definitions (let bindings) to divide it into more manageable pieces.

Task 5

Write a generic function

that counts the number of nodes in a tree; for example:

Lab3> size t1 3 Lab3> size t2

Task 6

A type isomorphism is a pair of back-and-forth functions between two types, f: a -> b and g: b -> a, such that if we apply either one to the result of applying the other then we get back

the original argument; that is, for any x : a and y : b we have that g (f x) evaluates to x and f (g y) evaluates to y.

Write a type isomorphism between the types Nat and List Unit; that is, write functions

```
n_to_lu : Nat -> List Unit
lu_to_n : List Unit -> Nat

so that, for example:
Lab3> lu_to_n (n_to_lu 0)
0
Lab3> lu_to_n (n_to_lu 1)
1
Lab3> lu_to_n (n_to_lu 3)
3
Lab3> n_to_lu (lu_to_n [])
[]
Lab3> n_to_lu (lu_to_n [()])
[()]
Lab3> n_to_lu (lu_to_n [(), (), ()])
[(), (), ()]
```