Homework 5

Functional Programming

due: 2024-04-24

Place your solutions in a module named Homework5 in a file with path homework/Homework5.idr
within your course git repository. Please submit only your Idris source file. At the beginning of the file
include a comment containing your name. Precede each problem’s solution with a comment specifying
the problem number and public export each definition that you are asked to write so that it can
be imported for testing. All definitions in your file should be total, which you can ensure by using
the %default total directive.

Whether or not it is complete, the solution file that you submit should load without errors. If you
encounter a syntax or type error that you are unable to resolve, use comments or goals to isolate it
from the part of the file that is interpreted by Idris.

Your solutions will be pulled automatically for marking shortly after the due date.

Problem 1
In lecture 8 we wrote the update function for Lists,

update_list : (new : a) -> (i : Nat) -> List a -> Maybe (List a)

which replaces the element at a given index with a new element, but which fails if that index is out
of bounds. Write the update function for Vects, which also replaces the element at the given index
with a new element, but which constrains the types so that it cannot fail. For example,

Homework5> update_list 'd' 1 ['a', 'b', 'c']
Just ['a', 'd', 'c']

Homework5> update_vect 'd' 1 ['a', 'b', 'c']
[ta', 'd", 'c']

Homework5> update_list 'd' 4 ['a', 'b', 'c']
Nothing

Homework5> update_vect 'd' 4 ['a', 'b', 'c']
<Type Error>

Writing the definition of this function is easy (indeed, Idris can write it for you), it’s figuring out the
type that may be tricky.

Problem 2
Recall the type family of tuples of arbitrary arity from lecture 9:

data Tuple : Vect n Type -> Type where
Nil : Tuple []
(::) : t -> Tuple ts -> Tuple (t :: ts)

Write the concatenation function for tuples, so that for example:

Homework5> concat_tuple ["hello" , 42] [True , id]
["hello", 42, True, id]



Homework5> concat_tuple ["hello" , 42] []
["hello", 42]

Homework5> concat_tuple [] [True , id]
[True, id]

Writing the definition of this function is easy (indeed, Idris can write it for you), it’s figuring out the
type that may be tricky.

Problem 3

In dynamically-typed programming languages values are not statically classified by their types. Instead,
they are paired together with a type tag containing information about their type that can be used by
the run-time environment. We can simulate this behavior in Idris using the following type:

Object : Type

Object = DPair Type id

Write the following function that converts an element of any type into an Object:

wrap : {a : Type} -> (x : a) -> Object

Next, write the function that converts an Object back into an element of its original type:
unwrap : (x : Object) -> Z?result_type

so that unwrap (wrap ?x) evaluates to ?x for any ?x. For example:

Homework5> unwrap (wrap "hello")

"hello"

Homework5> unwrap (wrap 42)

42

Homework5> unwrap (wrap (the (Tuple _) ["hello" , 42]))
["hello", 42]

Note that unwrap must be a dependent function because the type of the result depends on the value
of the argument.

Hint: Examine the values of some expressions of type Object, such as wrap "hello", and think
about how to recover the original type.

Problem 4

Proponents of dynamic typing claim that this approach has many advantages. Among its disadvantages
is that when writing functions we cannot make any assumptions about the types of the values they
will receive as arguments, and so we must keep checking the tags.

Write the following addition function for untyped terms:
(+) : Object -> Object -> Object
which, when applied to two Integers gives their sum, when applied to two Strings gives their

concatenation, when applied to two Bools gives their disjunction, and when applied to anything else
gives an error:

data Error : Type where
MkError : String -> Error

For example:

Homework5> unwrap $ wrap 2 + wrap 3
5 : Integer
Homework5> unwrap $ wrap "hello " + wrap "world"



"hello world" : String
Homework5> unwrap $ wrap False + wrap True

True : Bool
Homework5> unwrap $ wrap "hello " + wrap 42
MkError "Runtime Error" : Error

Note: You don’t need the wrap and unwrap functions from the previous problem to write this function
only to conveniently test it.

Problem 5
Copy the following indexed type family (which uses Data.Nat.LTE) into your file:

data Sorted : List Nat -> Type where
-- an empty list is sorted:

EmptSorted : Sorted []
-- a singleton list is sorted:
SingSorted : Sorted [x]

-- otherwise a list is sorted if its first two elements are ordered,
-- and its tail is sorted:
ConsSorted : LTE x y -> Sorted (y :: zs) -> Sorted (x :: y :: zs)

We can interpret the type Sorted xs as the proposition that the list xs is sorted.
e Prove that the list [1, 2, 3] is sorted:
one_two_three_sorted : Sorted [1, 2, 3]
e Prove that applying the successor function to each element of a sorted list preserves the sorting:

succ_sorted : (xs : List Nat) -> Sorted xs -> Sorted (map S xs)

Problem 6
The following indexed type family, which you should import or copy, is defined in the standard library
module Data.List.Elem:

data Elem : a -> List a -> Type where
Here : Elem z (z :: Xxs)
There : Elem z xs -> Elem z (x :: xs)

We can interpret the type Elem z xs as the proposition that the element z occurs somewhere within
the list xs.

e Prove that if an element occurs within a given list then it also occurs within the concatenation
of that list with any other list:

in_left : Elem z xs -> (ys : List a) -> Elem z (Xxs ++ ys)

e Prove that if an element occurs within a given list then it also occurs within the concatenation
of any other list with that list:

in_right : Elem z ys -> (xs : List a) -> Elem z (Xxs ++ ys)

Hint: Consider the recursive structure of the list concatenation function Prelude.List. (++) and
think about which argument to do induction on in order to best follow it.



