
Homework 4

Functional Programming

due: 2024-04-10

Place your solutions in a module named Homework4 in a file with path homework/Homework4.idr
within your course git repository. Please submit only your Idris source file. At the beginning of the file
include a comment containing your name. Precede each problem’s solution with a comment specifying
the problem number and public export each definition that you are asked to write so that it can
be imported for testing.

Whether or not it is complete, the solution file that you submit should load without errors. If you
encounter a syntax or type error that you are unable to resolve, use comments or goals to isolate it
from the part of the file that is interpreted by Idris.

Your solutions will be pulled automatically for marking shortly after the due date.

Problem 1
Recall that Lists are necessarily finite sequences of data, Streams are necessarily infinite sequences
of data, and Colists are sequences of data that may be either finite or infinite. Because of this, it
should always be safe to convert a List or a Stream to a Colist containing the same elements in
the same order.

Write Cast instances to convert both Lists and Streams to the corresponding Colists:
implementation Cast (List a) (Colist a) where

implementation Cast (Stream a) (Colist a) where

Both cast methods should be total.

Problem 2
Write the (proper) predecessor function for natural numbers:
prd : Nat -> Maybe Nat

then write the unroll function (see lab 7) for colists:
unroll : (a -> Maybe a) -> a -> Colist a

so that
Homework4> (prd 3 , prd 0)
(Just 2, Nothing)
Homework4> take 5 (unroll prd 5)
[5, 4, 3, 2, 1]
Homework4> take 5 (unroll prd 3)
[3, 2, 1, 0]

Both functions should be total. Why should the result sequence type of this unroll function be a
Colist rather than a List or a Stream?

1

Problem 3
Write Eq and Ord instances for the coinductive type of conatural numbers such that each number is
equal to only itself, and is greater than another number just in case it contains more Succ constructors.

For example:
Homework2> coN 42 == coN 42
True
Homework2> coN 42 == coN 43
False
Homework2> coN 42 < coN 43
True
Homework4> compare (coN 42) infinity
LT

You will need to mark your implementations as partial because Idris will (rightly) suspect that they
may not be total.
partial
implementation Eq Conat where

partial
implementation Ord Conat where

Demonstrate the partiality of these implementations by giving an example of an equality and an
ordering comparison that do not produce results in finite time.

Problem 4
The Fibonacci function is recursively defined as:

fib 𝑛 = {𝑛 if 𝑛 = 0 or 𝑛 = 1
fib (𝑛 − 1) + fib (𝑛 − 2) otherwise

You wrote this function by structural recursion in homework 1. That approach, while correct, is
inefficient, because each call to fib with argument greater than 1 generates two new recursive calls.

A more efficient approach is to define the stream of successive pairs of Fibonacci numbers:
fibStream : Stream (Pair Nat Nat)

so that the 𝑛th element of this stream is the ordered pair (fib 𝑛 , fib (S 𝑛)):

𝑛 ∶ 0 1 2 3 4 ...
fib 𝑛 ∶ 0 1 1 2 3 ...
fib (S 𝑛) ∶ 1 1 2 3 5 ...

This is more efficient because in order to determine the 𝑛th ordered pair in the stream we need only
the information contained in the (𝑛 − 1)th ordered pair.

To compute the 𝑛th Fibonacci number we just extract the first component of the 𝑛th ordered pair in
the stream:
fast_fib : Nat -> Nat
fast_fib n = (fst . index n) fibStream

where the stream versions of the index function is found in the standard library module Data.Stream.

Complete the definition of fibStream and verify that fast_fib agrees with – and runs faster than
– your fib implementation from homework 1.

2

Problem 5
Write a(ny possible) total expression with each of the following types:
expr1 : Monoid a => a

expr2 : Applicative t => (t a -> b) -> a -> t b

expr3 : Monad t => (a -> t b) -> (b -> t c) -> a -> t c

Problem 6
Write the Functor instance for Trees:
implementation Functor Tree where

Problem 7
Write the function
monadify : Monad m => (a -> b -> c) -> m a -> m b -> m c

which transforms any two-argument function into its monadic version:
Homework4> monadify (+) (Just 1) (Just 2)
Just 3
Homework4> the (List _) $ monadify (+) [1,2] [3,4,5]
[4, 5, 6, 5, 6, 7]
Homework4> :exec monadify (++) getLine getLine >>= printLn
hello_
world
"hello_world"

Hint: using do-notation and incrementally refining your goal may be helpful.

Problem 8
The tensor product of an 𝑚-dimensional column vector ⃗𝑥 with an 𝑛-dimensional row vector ⃗𝑦, written
“ ⃗𝑥 ⊗ ⃗𝑦”, is an (𝑚 × 𝑛)-matrix whose entry at the intersection of row 𝑖 and column 𝑗 is the product of
the 𝑖th entry of ⃗𝑥 and the 𝑗th entry of ⃗𝑦:

(⃗𝑥 ⊗ ⃗𝑦)𝑖,𝑗 = ⃗𝑥𝑖 × ⃗𝑦𝑗

or

⎡
⎢
⎢
⎢
⎣

𝑥1
𝑥2
𝑥3
⋮

⎤
⎥
⎥
⎥
⎦

⊗ [𝑦1 𝑦2 𝑦3 ⋯] =
⎡
⎢
⎢
⎢
⎣

𝑥1𝑦1 𝑥1𝑦2 𝑥1𝑦3 ⋯
𝑥2𝑦1 𝑥2𝑦2 𝑥2𝑦3 ⋯
𝑥3𝑦1 𝑥3𝑦2 𝑥3𝑦3 ⋯

⋮ ⋮ ⋮ ⋱

⎤
⎥
⎥
⎥
⎦

We can represent an 𝑛-dimensional (column or row) vector as a List of length 𝑛, and an (𝑚×𝑛)-matrix
as a length 𝑚 List of length 𝑛 Lists, where each inner list represents a row of the matrix.

Write the function that computes the tensor product of vectors, as described above:
tensor : Num a => List a -> List a -> List (List a)

Note: You can (and should!) write this function as a short one-liner, using the fact that List is a
Functor.

For example:
Homework4> tensor [1,2,3] [10,20,30]
[[10, 20, 30], [20, 40, 60], [30, 60, 90]]

3

