Homework 2

Functional Programming

due: 2024-02-21

Place your solutions in a module named Homework2 in a file with path homework/Homework2.idr
within your course git repository. Please submit only your Idris source file. At the beginning of the file
include a comment containing your name. Precede each problem’s solution with a comment specifying
the problem number and public export each definition that you are asked to write so that it can
be imported for testing.

Whether or not it is complete, the solution file that you submit should load without errors. If you
encounter a syntax or type error that you are unable to resolve, use comments or goals to isolate it
from the part of the file that is interpreted by Idris.

Your solutions will be pulled automatically for marking shortly after the due date.

Problem 1

Write a(ny possible terminating) function with each of the following types:

funi : Either a a -> a

fun2 : Pair (Pair a b) c -> Pair a (Pair b c)

fun3 : Pair a (Either b ¢) -> Either (Pair a b) (Pair a c)
Problem 2

Recall the type constructor for (node-labeled binary) trees. Write a generic function that reflects the
structure of a tree.

reflect : Tree a -> Tree a
For example: 5 5 4 4
/ \ RN VRN
1 — 1 and 2 6 — 6 2
\ / / N\ / N\ / N\ / N\
3 3 1 3 5 7 7 5 3 1
Problem 3

Write a recursive function that returns the greatest number in a list, if there is one:

greatest : List Integer -> Maybe Integer

For example:

Homework2> greatest []

Nothing

Homework2> greatest [1, 2, 3, 3, 2, 1]
Just 3

Hint: You can use the function max : Integer -> Integer -> Integer to get the larger of
two Integers.



Problem 4
Define a type isomorphism between the types Maybe a and Either Unit a, generic in the param-
eter type a. Recall that this means defining back-and-forth functions,

forward : Maybe a -> Either Unit a
backward : Either Unit a -> Maybe a
such that:
e backward (forward x) evaluates to x for any x : Maybe a, and
e forward (backward y) evaluatestoy forany y : Either Unit a.
Problem 5

Write the zip function for trees, which has the following type:

zip_tree : (a -> b -> c) -> Tree a -> Tree b -> Tree c

which should behave as follows:

4 4 4
VRN VRN VRN

zip_tree max 2 6 (reflect 2 6 ) = 6 6
/ N\ / / N\ / \ /
1 3 5 1 3 5 5 5

Problem 6

Use recursion to write the flatten function for lists:

flatten_list : List (List a) -> List a

which should behave as follows:

Homework2> -- flatten an empty list of lists:

Homework2> flatten_list []

[]

Homework2> -- flatten a non-empty list of empty lists:

Homework2> flatten_list [[] , []1 , [1]

[]

Homework2> -- flatten a non-empty list of non-empty lists:

Homework2> flatten_list [[21,2,3] , [4,5,6] , [7,8,9]]
[1’ 2’ 3’ 47 5’ 6’ 7’ 8’ 9]

Problem 7
Now rewrite the flatten function for lists using the fold for lists, which has the following type:

fold_1list : (¢ : a ->t ->t) -> (n : t) -> List a -> t

Note: Your solution should only call this fold function and not use any pattern matching nor recursion.
In other words, you should write your function by completing the goals ?c and ?n below.

flatten_list' : List (List a) -> List a
flatten_list' = fold_list ?c ?n
Problem 8

Write the fold function for natural numbers, fold_nat. Then describe in words (as a comment) what
this function does.



