CSCI 2520: Dependently Typed Functional Programming
Bowdoin College

Spring 2024

Online Presence

web: bowdoin-csci-2520.github.io

slack: bowdoin-csci-2520.slack.com

Meetings

Mondays, Wednesdays, Fridays 9:05-10:00 in Searles 128

Instructor

Ed Morehouse (e.morehouse@bowdoin.edu) Searles 202
Office hours: Mondays 2:00-3:00PM, Tuesdays 3:00-4:00PM, Wednesdays 10:00-11:00AM and 2:00-
3:00PM, and by appointment.

Course Description

An important aspect of the expressiveness of a programming language concerns what kinds of things
it can manipulate as data. This course introduces programming in a dependently typed functional
language. In such a setting both functions and types are ordinary data. This enables features such
as higher-order and generic functions, as well as data whose type is computed from other data. One
benefit of working in this setting is that properties of programs can be both expressed and proved
within the language itself, providing much stronger guarantees of correctness than is possible using
testing. In this course we will study dependently typed functional programming using the language
Idris (www.idris-lang.org).

Learning Goals

Upon successful completion of this course students should:
o understand the concepts of simple, parameterized, and indexed inductive types,
o understand the concepts of structurally recursive, higher-order, and dependent functions,

e be familiar with algebraic interfaces used in functional programming, including monoids, func-
tors, and monads,

e be familiar with the Curry-Howard correspondence, and its use to state and prove properties
of programs.

https://bowdoin-csci-2520.github.io/
https://bowdoin-csci-2520.slack.com/
https://tildesites.bowdoin.edu/~e.morehouse
mailto:e.morehouse@bowdoin.edu
https://www.idris-lang.org

Course Structure

The main components of the course are as follows.

lecture: There are two weekly lectures, which introduce new concepts together with examples of
their application.

lab: There is a weekly lab session, in which students complete tasks designed to build experience
and competence with the concepts presented in the lectures.

homework: Approximately every other week there is a homework assignment consisting of a num-
ber of short programming exercises intended to build further competence and provide a basis
for assessing student progress.

project: There is a term project, consisting of a larger and less precisely specified programming
task, allowing students to demonstrate creative problem-solving in addition to programming
skills.

exam: There are two exams to assess students’ mastery of course material.

Student Evaluation

Course grades are determined as follows:

Homework Problem Sets 40%
Programming Project 20%
Exams 40%

You have a budget of 5 late days that you may use as you like for course assignments (subject to
college restrictions regarding reading period and coursework submission deadlines).

Schedule

A tentative schedule of topics follows.

week beginning topics

1 2024-01-22 introduction to Idris

2 2024-01-29 inductive types and recursive functions

3 2024-02-05 parameterized types and generic functions

4 2024-02-12 function literals and higher-order functions
5 2024-02-19 programming interfaces
6
7
8

2024-02-26 monadic I/0
2024-03-04 review and first exam
2024-03-11 SPRING BREAK
9 2024-03-18 SPRING BREAK
10 2024-03-25 totality for data and codata
11 2024-04-01 algebraic interfaces
12 2024-04-08 indexed types and dependent functions
13 2024-04-15 propositions as types and first-order logic
14 2024-04-22 inductive equality types
15 2024-04-29 record types and automation
16 2024-05-06 review and second exam

Academic Integrity

Collaboration and learning from one another are encouraged, while copying answers and cheating
are forbidden. You are expected to be able to distinguish the two. If you are contemplating an
action, and you’re not sure into which category it falls, you should consider whether what you intend
to submit for evaluation is the product of your own efforts and represents your own understanding
of the concepts involved. If it is/does not, then you should not submit the work as your own.

The Computer Science Department maintains a Collaboration Policy. It applies to this course as
follows.

course component ‘ collaboration level

labs 0
homeworks 1
project 2
exams 3

Moreover, Bowdoin College imposes an Academic Honor Code, which you are expected to abide by
in all of your courses, including this one.

Academic Accommodations
Your instructor is committed to fostering an accessible and inclusive learning environment where

all students feel welcome, comfortable, and treated fairly. If you have any concerns or suggestions
for improvement, or would like to request an individual accommodation, please let me know.

https://www.bowdoin.edu/computer-science/resources-and-opportunities/collaboration-policy.html
https://www.bowdoin.edu/dean-of-students/ccs/community-standards/the-codes.html

