
Turing Machines

CSCI 2210

2023-10-23 and 2023-10-25

Context-Free Languages

We used the pumping lemma for regular languages to show that not all string
languages are regular, for example:

• 0𝑛 1𝑛, the language of a run of 0s followed by an equal-length run of 1s,
• 𝑤 𝑤R, the language of even-length palindromes (strings followed by their own

reversal).
We saw that these languages are context-free. The stack of a PDA or
tree-structure of a CFG lets us remember an unbounded quantity of information,
but only of a certain form.

2

Non-Context-Free Languages
It is natural to ask, are all string languages context free?
The answer is no.
There is a pumping lemma for context-free languages as well.
It lets us divide any long-enough string into five parts and pump the middle three.
Some simple languages that are not context-free include:

• the language of concatenations of two copies of the same string, L𝑤𝑤,
• the language of three runs of the same length, L𝑎𝑛𝑏𝑛𝑐𝑛 .

Intuitively, the problem is that the information we need to decide such languages is
lost when we pop the stack.

3

Traversing the Memory

It seems like we could gain a lot of computational power if we could traverse the
memory at will, instead of having access to just the top of a stack.

This is the insight behind the Turing machine.

Indeed, we don’t even need to separate the memory from the input, because
if we could traverse the memory then we could just begin by copying the input
string into memory.

4

Doubly-Linked Lists

The kind of traversable memory we will consider can be represented by a
doubly-linked list.

This is a 1-dimensional sequential data structure two ends: left and right,
and where each element

• has a left neighbor, unless it is itself at the left end,
• has a right neighbor, unless it is itself at the right end.

The list can grow by pushing a new element onto either the left or the right end,
and it can shrink by popping an element from either the left or right end.

5

Turing Machine
Intuitively, a (deterministic) Turing machine (“TM”) is a finite automaton with a
doubly-linked list memory. Formally, it has the following components:
input alphabet: a nonempty finite set of symbols Σ,
working alphabet: a finite set of symbols that includes the input symbols Γ ⊇ Σ,
state set: a nonempty finite set of states Q,
start state: a state 𝑞0 ∈ Q,
halt state: a state 𝑞ℎ ∈ Q,
state transition partial function: a partial function δ ∶ Q × Γ ⇀ Q × Γ × D such

that 𝑞ℎ ∉ dom(δ).
The set D ≔ {L, R} is the two directions of a doubly-linked list: left and right.

6

Partial Functions

A partial function 𝑓 ∶ A ⇀ B is just a relation 𝑓 ∶ A ⇸ B such that each element
of the domain set is related to at most one element of the codomain set.

We say 𝑥 ∈ A is in the domain of definition of 𝑓 , and write “𝑥 ∈ dom(𝑓)”,
if ∃ 𝑦 ∈ B . 𝑓 (𝑥 ⤍ 𝑦).

Because there is at most one such 𝑦, we can also use function notation
and write “𝑓 (𝑥 ↦ 𝑦)” or “𝑓(𝑥) = 𝑦”.

7

TM State Transition Graph
We can represent a TM M using a state transition graph.
The vertex set is Q.
For vertices 𝑞𝑎, 𝑞𝑏 ∈ Q, symbols 𝑥, 𝑦 ∈ Γ, and direction 𝑑 ∈ D, there is an edge
(𝑥 ↦ 𝑦, 𝑑) ∶ 𝑞𝑎 → 𝑞𝑏 just in case δ ((𝑞𝑎 , 𝑥) ⤍ (𝑞𝑏 , 𝑦 , 𝑑)).

• The notation “𝑥 ↦ 𝑦” indicates that we read 𝑥 from and write 𝑦 to the current
memory location.

• We use “␣” as shorthand for an end of the list, so “␣ ↦ 𝑦” means “push 𝑦 to
this end of the list”, and “𝑥 ↦ ␣” means “pop 𝑥 from this end of the list”.

• Multiple symbols on the left of a “ ↦ ” is short for reading any one of them,
while none stands for reading any symbol (equivalently, not reading at all).

• Leaving the right of a “ ↦ ” blank is short for writing the same symbol that was
just read (equivalently, not writing at all).

8

Example: TM State Transition Graph Diagram
Let M0𝑛1𝑛 be the TM with input alphabet Σ ≔ {0, 1} specified by:

𝑞0 𝑞1 𝑞2

𝑞3 𝑞4

0 ↦ X, R

Y ↦ , R

0, Y ↦ , R

1 ↦ Y, L

0, Y ↦ , L

X ↦ , R

Y ↦ , R ␣ ↦ , LThis means:
• Γ ≔

Σ ∪ {X, Y},
• Q ≔

{𝑞0, ⋯, 𝑞4},
• 𝑞0 ≔ 𝑞0,
• 𝑞ℎ ≔ 𝑞4,

δ 0 1 X Y ␣
𝑞0 (𝑞1 , X , R) − − (𝑞3 , Y , R) −
𝑞1 (𝑞1 , 0 , R) (𝑞2 , Y , L) − (𝑞1 , Y , R) −
𝑞2 (𝑞2 , 0 , L) − (𝑞0 , X , R) (𝑞2 , Y , L) −
𝑞3 − − − (𝑞3 , Y , R) (𝑞4 , ␣ , L)
𝑞4 − − − − −

9

Turing Machine Operational Semantics
A Turing machine M computes according to the following operational semantics.
Given an input string 𝑤 ∈ Σ∗:

• M begins in the start state 𝑞0 with only 𝑤 in its memory, and its pointer on the
first symbol of 𝑤 (if any).

• M attempts to read from the current memory location, yielding either a symbol
from Γ or the information that it has reached the end, represented by ␣.

• When M is in state 𝑞𝑎 and reads symbol 𝑥, if δ ((𝑞𝑎 , 𝑥) ⤍ (𝑞𝑏 , 𝑦 , 𝑑)) then M
writes symbol 𝑦, updates its pointer according to 𝑑, and transitions to state 𝑞𝑏.

• If (𝑞𝑎 , 𝑥) ∉ dom(δ), then computation ceases.
• If M is in state 𝑞ℎ when computation ceases then we say that M accepts 𝑤,

otherwise we say that M rejects 𝑤.
10

Operational Semantics in Action
Because the state, memory contents, and memory pointer all keep changing,
describing the computation of a TM on an input can be verbose and tedious.
We can use a Turing machine simulator, such as the one at
https://turingmachine.io/ to help us visualize it.
decides 0^n 1^n :
i npu t : '00001111 '
b lank : ' '
s t a r t s t a t e : q0
tab l e :

q0 :
0 : { w r i t e : X , R : q1 }
Y : {R : q3 }

q1 :
[0 , Y] : R
1 : { w r i t e : Y , L : q2 }

q2 :
[0 , Y] : L
X : {R : q0 }

q3 :
Y : R
' ' : { L : q4 }

q4 :
ha l t

11

https://turingmachine.io/

Turing Machine Rant

Following Turing’s original 1936 presentation, many sources describe the memory
of a TM as “an infinitely long tape, all but a finite portion of which is blank”.

I think that this is mostly just an artifact of the state of technology in the 1930s
(telegraph tape, reel-to-reel tape, etc.).

You don’t need anything infinite to describe a Turing machine.
You just need a doubly-linked list that can be pushed and popped at each end.

12

Computing Functions with Turing Machines
Because a TM can leave information on the tape when it ceases computation,
we can use it to compute partial functions Σ∗ ⇀ Γ∗. (Why only partial?)
For example, given two natural numbers in unary notation separated by a 0, we
can compute their sum:

𝑞0 𝑞1

𝑞2

𝑞3𝑞41 ↦ , R

0 ↦ , R

1 ↦ 0, L0 ↦ 1, R

␣ ↦ , L
0 ↦ ␣, L

13

Computing Functions with Turing Machines ctd.
computes the unary sum:
i npu t : '11011 '
b lank : ' '
s t a r t s t a t e : q0
tab l e :

scan to d i v i d e r
q0 :

1 : R
0 : {R : q1 }

decrement second number
q1 :

1 : { w r i t e : 0 , L : q2 }
' ' : { L : q3 }

increment f i r s t number
q2 :

0 : { w r i t e : 1 , R : q0 }
remove d i v i d e r
q3 :

0 : { w r i t e : ' ' , L : h a l t }
h a l t
h a l t :

14

Making Copies
Turing machines can copy their input:
Copies a b ina ry s t r i n g .
i npu t : '0101 '
b lank : ' '
s t a r t s t a t e : sep
tab l e :

w r i t e s a separa tor a f t e r i npu t
sep :

[0 , 1] : {R : sep }
' ' : { w r i t e : $, L : r e t }

reads an inpu t symbol & rep laces w/ marker
rd :

0 : { w r i t e : X , R : s0 }
1 : { w r i t e : Y , R : s1 }
$: {R : h a l t }

scans r i g h t to copy a 0
s0 :

[0 , 1] : R
$: {R : w0}

w r i t e s a 0 to the end of the copy
w0 :

[0 , 1] : R
' ' : { w r i t e : 0 , L : r e t }

scans r i g h t to copy a 1
s1 :

[0 , 1] : R
$: {R : w1}

w r i t e s a 1 to the end of the copy
w1 :

[0 , 1] : R
' ' : { w r i t e : 1 , L : r e t }

re tu rns to the i npu t & rep lace l a s t marker
r e t :

[0 , 1 , $] : L
X : { w r i t e : 0 , R : rd }
Y : { w r i t e : 1 , R : rd }
' ' : {R : rd }

ha l t s
h a l t :

15

Conditionals
Turing machines can branch based on their input:
branches on the cu r ren t b i t
i npu t : '0 $0101$1010$ '
b lank : ' '
s t a r t s t a t e : br
t ab l e :

branch on a b i t
br :

0 : {R : take }
1 : {R : sk ip }

take the f i r s t branch
take :

[0 , 1] : {R : take }
$: {R : m0}

sk ip the f i r s t branch
sk ip :

[0 , 1] : {R : sk ip }
$: {R : next }

take the next branch
next :

[0 , 1] : {R : next }
$: {R : m1}

code f o r machine 0 goes here
m0 :

[0 , 1] : R
code f o r machine 1 goes here
m1 :

[0 , 1] : R

16

Turing Machine Computation

You can find many more examples of arithmetic and logical functions implemented
as Turing machines in the readings and at turingmachine.io, including:

• unary multiplication,
• binary addition and multiplication,
• deciding the non-context-free language 𝑎𝑛 𝑏𝑛 𝑐𝑛.

We will see later that any function we know how to compute can be computed,
in principle, using this very simple model of computation.

17

Turing Machine Variants
There are several variants of the TM model of computation, including:

• the option to not move left or right during a state transition,
• memory that can grow and shrink at only one end,
• multiple independent memories (or “tapes”),
• a nondeterministic transition relation.

The TM model of computation is quite robust, in the sense that these all compute
the same class of partial functions.

The way these equivalences are proved is by simulating one model in another.

18

Stationary TM Equivalence

In a stationary TM we have D ≔ {L, S, R}, where S indicates that we stay on the
same memory cell.

We can simulate an (itinerant?) TM in in the stationary TM model by simply not
making any stationary state transitions.

To simulate a stationary TM in our usual TM model, each time we want to make a
state transition (𝑥 ↦ 𝑦 , S), we instead make a transition (𝑥 ↦ 𝑦 , L), followed by a
transition (↦ , R).

19

One-Ended TM Equivalence
In a one-ended TM, we can’t make a transition (␣ ↦ 𝑥 , 𝑑) after going left, because
this grows the memory on the left.
Likewise, we can’t make a transition (𝑥 ↦ ␣ , 𝑑) from the left-most cell (unless it is
also the right-most cell), because this shrinks the memory on the left.
We can simulate a one-ended TM in our two-ended TM model by simply not
making the forbidden transitions.
To simulate a two-ended TM in the one-ended TM model:

• each time we want to push a cell containing 𝑥 to the left end of the memory,
we instead move the memory contents one cell to the right, then return to the
left end and write 𝑥 to the left-most cell.

• each time we want to pop a cell containing 𝑥 from the left end of the memory,
we instead move the memory contents one cell to the left overwriting 𝑥, then
return to the left-most cell. 20

Multi-Tape TM Equivalence
In an 𝑛-tape TM there are 𝑛 independent memories that we read, write, and move
about.
A state transition has the form:

(𝑥1 , ⋯ , 𝑥𝑛) ↦ (𝑦1 , ⋯ , 𝑦𝑛), (𝑑1 , ⋯ , 𝑑𝑛) where D ≔ {L, S, R}

We can simulate an ordinary TM in the 𝑛-tape TM model, so long as 𝑛 > 0, by
ignoring all but one tape. (What happens when 𝑛 = 0?)
Simulating an 𝑛-tape TM in our usual model is more complex.
One approach uses 2𝑛 tracks, where half of the tracks store tape contents and the
other half store head positions.
The details are in Hopcroft §8.4.

21

Non-Deterministic TM Equivalence
In a nondeterministic Turing machine (nTM), instead of a transition partial function
δ ∶ Q × Γ ⇀ Q × Γ × D we have a transition relation Δ ∶ Q × Γ ⇸ Q × Γ × D.
By the powerset trick this is equivalent to a function that produces a set of
successor state, symbol written, direction moved triples.
Simulating an ordinary TM in the nTM model is easy: every partial function is
already a relation.
Going the other way is tricky. The idea is to use a multi-tape TM (which we know
we can simulate with a single-tape TM) and keep track of the list of all of the states
that the nTM could be in. If the nTM has more than one possible next state, we add
them all to the list. We step each simulation in breadth-first order and halt if any of
them does. The details are in Hopcroft §8.4.

22

