
Turing Computability

CSCI 2210

2023-10-30 — 2023-11-06



Language Recognized by a Turing Machine

For a Turing machine M with input alphabet Σ, the language recognized by M
is the set of strings on which M ceases computation in its accepting state 𝑞ℎ.

L(M) ≔ {𝑤 ∈ Σ∗ | M accepts 𝑤}

A string language is called recursively enumerable if it is recognized by some TM.

2



Non-Recursively Enumerable Languages
It is natural to ask, are all string languages recursively enumerable?
The answer is no.
Theorem
There are string languages that are not recognized by any Turing machine.
Proof.
Each Turing machine recognizes a single language.
The set of Turing machines over a finite alphabet Σ is countably infinite:

• each TM is described by a finite string of symbols (its description by
components) over a finite alphabet (say, Unicode ∪Σ).

• we can enumerate these strings (say, first by length, then alphabetically).
The set of languages over a finite alphabet Σ is uncountable:

• The set of languages over Σ is the powerset of the set of strings over Σ.
• The result follows by diagonalization.

3



Diagonalization
Theorem
For any countably infinite set S, the powerset ℘(S) is strictly larger than S.
Proof.
We assume the contrary to reach a contradiction.
Since S is countable, we can enumerate its elements: S = {𝑥0, 𝑥1, 𝑥2, ⋯}.
If ℘(S) were countable, we could enumerate its elements: ℘(S) = {S0, S1, S2, ⋯} .
For each natural number 𝑖, either 𝑥𝑖 ∈ S𝑖 or 𝑥𝑖 ∉ S𝑖:

e.g.

𝑥0 𝑥1 𝑥2 ⋯
S0 ∉ ∉ ∈ ⋯
S1 ∉ ∈ ∈ ⋯
S2 ∉ ∉ ∉ ⋯
⋮ ⋮ ⋮ ⋮

Consider the subset S𝑑 ⊆ S defined as S𝑑 ≔ {𝑥𝑖 ∈ S | 𝑥𝑖 ∉ S𝑖}.
Then ∀ 𝑖 ∈ ℕ . S𝑑 ≠ S𝑖 because 𝑥𝑖 ∈ S𝑑 ⟺ 𝑥𝑖 ∉ S𝑖,
so S𝑑 ⊆ S, yet it does not occur in the alleged enumeration of ℘(S). 4



Termination

How can we tell if a string 𝑤 is in the language recognized by TM M?
We can start M running on input 𝑤 and see what happens.
M might eventually:

• cease computation and accept,
• cease computation and reject,
• never cease computation.

The third possibility means that we may not be able to tell whether 𝑤 ∈ L(M).

5



Language Decided by a Turing Machine

If a TM M eventually ceases computation on every input, and thus either accepts
or rejects every string, we say that M decides L(M).

A string language is called decidable if it is decided by some TM.

Because there are string languages that are not recognized by any TM,
there are string languages that are not decidable.

6



Deciding Language Membership

For some languages we can decide whether a a string is a member.

One way to do this is to encode an algorithm that decides it as a TM
and then run that TM on a given input.

7



Deciding a Regular Language by Simulating a DFA
We know that a regular language over a finite alphabet Σ can be decided by a DFA.

• It is possible to encode the specification of a DFA as a (say, binary) string.
• It is possible to encode a string over Σ as a (say, binary) string.
• It is possible to encode the ordered pair of two strings as a (say binary) string.

Thus, for a DFA D and string 𝑤 ∈ Σ∗ we can produce a binary string ⟨D , 𝑤⟩
that encodes the ordered pair (D , 𝑤).
There is a TM MDFA that given input string ⟨D , 𝑤⟩ simulates the operation
of DFA D on input string 𝑤.
Thus, the TM MDFA accepts the string ⟨D , 𝑤⟩ just in case the DFA D accepts
the string 𝑤.
Because a DFA halts on every input, MDFA decides the regular language L(D).

8



Deciding Whether a Regular Language is Empty
We can use a TM to decide whether or not the language of a DFA is empty.
The idea is to apply the following algorithm to the state transition graph of a DFA:

• Enumerate the edges of the graph.
• Initialize a list of accessible states to [𝑞0].
• Repeat the following steps until a fixed-point is reached:

for edge 𝑒 ∶ 𝑞𝑥 → 𝑞𝑦, if 𝑞𝑥 is accessible remove 𝑒 from the edge enumeration,

if 𝑞𝑦 is not accessible, add it to the list of accessible states.

• This process will terminate with the edge enumeration containing only
inaccessible source states (possibly because it is empty).

• Search the list of accessible states for an accept state, accept just in case one
is found.

9



Universal Turing Machines
We’ve seen that it is possible to encode a DFA D as a string, and to define a TM
MDFA that simulates its operation on an input string 𝑤 when given as input ⟨D , 𝑤⟩.

In 1936 Turing described a TM “U” such that given as input ⟨M , 𝑤⟩, the encoding
of a TM M and a string 𝑤, U simulates the operation of machine M on input 𝑤.

Such a TM U is called a universal Turing machine.

The language recognized by a UTM is: L(U) = {⟨M , 𝑤⟩ | 𝑤 ∈ L(M)}.

So the operation of running a given TM on a given input is something that a TM
can do.

For a DFA D and string 𝑤 we can use simulation to decide whether 𝑤 ∈ L(D).
10



The Acceptance Problem
The acceptance problem for TMs asks, given TM M and string 𝑤, is 𝑤 ∈ L(M)?

This time simulation cannot decide this question because:

• if M halts and accepts 𝑤 then U halts and accepts ⟨M , 𝑤⟩, as desired,
• if M halts and rejects 𝑤 then U halts and rejects ⟨M , 𝑤⟩, as desired,
• if M does not halt on 𝑤 then U does not halt ⟨M , 𝑤⟩, and we don’t get an

answer to the question.

But maybe there’s some clever way to answer the question that doesn’t involve
running M, like the way we decided whether the language of a DFA is empty.

Alas, there is not.

11



Undecidability of the Acceptance Problem
Theorem
The acceptance problem for TMs is not decidable by any Turing machine;
i.e., L(U) is not a decidable language.

To show this we derive a contradiction from the premise that L(U) is decidable.

Suppose TM MA could decide the acceptance problem:
• if M halts and accepts 𝑤 then MA halts and accepts input ⟨M , 𝑤⟩,
• if M halts and rejects 𝑤 then MA halts and rejects input ⟨M , 𝑤⟩,
• if M does not halt on input 𝑤 then MA halts and rejects input ⟨M , 𝑤⟩.

Note that MA must halt on every input because it is a decider.

12



Diagonalizing Acceptance
We show that no such machine MA can exist by diagonalization.

Consider the TM D that takes as input the encoding of a TM M and:
1. runs MA with input ⟨M , ⟨M⟩⟩,

this decides whether machine M accepts its own encoding as input,
2. negates the result.

So D accepts ⟨M⟩ just in case MA rejects ⟨M , ⟨M⟩⟩,
which happens just in case M does not accept as input ⟨M⟩,
either because it rejects or diverges.

13



Feeding the Diagonalizer its own Encoding
We can see how each TM behaves given the encoding of another TM as input.

e.g.

U ⟨M0⟩ ⟨M1⟩ ⟨M2⟩ ⋯
M0 ✓ ↑ × ⋯
M1 ↑ ✓ ✓ ⋯
M2 × ✓ ↑ ⋯
⋮ ⋮ ⋮ ⋮

MA ⟨M0⟩ ⟨M1⟩ ⟨M2⟩ ⋯
M0 ✓ × × ⋯
M1 × ✓ ✓ ⋯
M2 × ✓ × ⋯
⋮ ⋮ ⋮ ⋮

Somehow MA is able to tell when a computation will diverge and reject in those
cases.

Somewhere in the enumeration of TMs is D, which accepts input ⟨M⟩ just in case
MA rejects input ⟨M , ⟨M⟩⟩:

U ⟨M0⟩ ⟨M1⟩ ⟨M2⟩ ⋯ ⟨D⟩ ⋯
D × × ✓ ⋯ ? ⋯

How does machine D behave on input ⟨D⟩?
14



Reaching a Contradiction

Machine D either accepts input ⟨D⟩ or it does not.

• If D accepts ⟨D⟩ then MA accepts ⟨D , ⟨D⟩⟩, so D must reject ⟨D⟩.
• If D does not accept ⟨D⟩ then MA rejects ⟨D , ⟨D⟩⟩, so D must accept ⟨D⟩.

Both cases are impossible, so the premise that a machine MA exists must be
false.

15



Negating TMs

In the previous proof we negated the result of running a TM on an input.

For any TM M there is a negated TM M̅ such that:
• if M halts and accepts input 𝑤 then M̅ halts and rejects 𝑤,
• if M halts and rejects input 𝑤 then M̅ halts and accepts 𝑤,
• if M doesn’t halt then M̅ doesn’t halt either.

16



The Halting Problem

The halting problem for TMs asks, given TM M and string 𝑤, does M eventually
halt in input 𝑤, either by accepting or rejecting it?

Theorem
The halting problem is equivalent to the acceptance problem:
if we could decide one then we could decide the other.

17



Proof.
⇒ If TM MH could decide the halting problem, then we could use it to decide
the acceptance problem:

• we run MH on input ⟨M , 𝑤⟩,
• if MH accepts then M halts on input 𝑤 so we just run M on input 𝑤,
• if MH rejects then M does not halt on input 𝑤, so M does not accept 𝑤, so we

reject.

⇐ If TM MA could decide the acceptance problem, then we could use it to decide
the halting problem:

• we run MA on both input ⟨M , 𝑤⟩ and input ⟨M̅ , 𝑤⟩,
• if MA accepts ⟨M , 𝑤⟩ then M accepts input 𝑤, so M halts on 𝑤, so we accept.
• if MA accepts ⟨M̅ , 𝑤⟩ then M rejects input 𝑤, so M halts on 𝑤, so we accept.
• if MA rejects both ⟨M , 𝑤⟩ and ⟨M̅ , 𝑤⟩ then M neither accepts nor rejects 𝑤,

so M does not halt on 𝑤, so we reject.

18



Undecidability of the Halting Problem

Corollary
The halting problem for TMs is not decidable by any Turing machine.

19



Complement of a Language

The complement of a language L ⊆ Σ∗ is the set of strings over the same
alphabet that are not contained in L:

L̅ ≔ {𝑤 ∈ Σ∗ | 𝑤 ∉ L}

20



Complement of a Decidable Language
Theorem
The complement of a decidable language is decidable.

Proof.
If language L is decidable then there is a TM M that halts on all inputs with
L(M) = L.

The negated TM M̅ accepts exactly the strings that M rejects, and vice-versa.

Because M halts on all inputs, so does M̅.

Thus L(M̅) = L̅.

21



Complement of a Recursively Enumerable Language
Theorem
If languages L and L̅ are both recursively enumerable then L is decidable.

Proof.
For language L ⊆ Σ∗ and string 𝑤 ∈ Σ∗, either 𝑤 ∈ L or 𝑤 ∈ L̅.

Each recursively enumerable language has a TM that recognizes it.
Say L(ML) = L and L(ML̅ = L̅).

To decide whether 𝑤 ∈ L, run both ML and ML̅ in parallel on 𝑤.

Exactly one must eventually accept (why?).

If ML accepts then 𝑤 ∈ L and if ML̅ accepts then 𝑤 ∉ L.
22



Hierarchy of Computable Languages
Looking back on the models of computation we have studied, we can identify the
following classes of string languages:

regular

context-free

decidable

recursively enumerable

23


