
Regular Expressions

CSCI 2210

2023-09-25 – 2023-10-02



A Theory of Languages

Over the last two weeks we have studied a class of languages that are decidable
by a range of simple memory-free machine models, the regular languages.

Now we will describe a mathematical theory for these languages.

As we do this we will recall a familiar analog in a theory of arithmetic.

Many constructions will translate directly, but the theories will not be the same
because numbers and languages have different properties from each other.

2



Expression Languages
A (single-sorted) expression language is a formal system for representing
tree-structured syntax. It consists of:
variables: which we typically write as 𝑥, 𝑦, 𝑧, etc.,
symbols: each with a natural number arity specifying the number of required
arguments,

parentheses: for grouping, so that we can write the tree structure linearly.

A syntactically valid construction made up of these is an expression.

We will disambiguate an “expression language” from a “string language”
if necessary.

3



Arithmetic Expressions
You are probably familiar with the following expression language of arithmetic with
symbols:

• 0 and 1, each of arity 0,
• −+− and −×−, each of arity 2.

For convenience we allow the abbreviation 𝑛 ≔
𝑛 times

⏞⏞⏞⏞⏞(1 + ⋯) + 1.

These symbols don’t mean anything, they’re pure syntax.

Sometimes we highlight expressions with underlining, bold font, etc. to distinguish
e.g. the symbol 0 from the natural number 0.

4



Arithmetic Expression Trees
Expressions in this language include, (𝑥 + 0) × (𝑦 + 1).

This is a linear representation of the tree structure:

×

+

𝑥 0

+

𝑦 1

We can substitute one expression for a variable in another expression by
“plugging in” a copy of its tree at each occurrence of the given variable.

5



Regular Expressions

The expression language of regular expressions over an alphabet Σ has the
symbols:

• for each 𝑠 ∈ Σ, a symbol 𝑠 of arity 0,
• ∅ and ε, each of arity 0,
• −∗ of arity 1,
• −+− and −⋅−, each of arity 2.

6



Regular Expression Trees
If Σ ≔ {0, 1} then expressions in this language include, ∅ + (1 ⋅ 𝑥∗).

This is a linear representation of the tree structure:

+

∅ ⋅

1 ∗

𝑥

It is customary to write −⋅− as juxtaposition, so 1 ⋅ 0 becomes “1 0”.
7



Interpretation
An interpretation of an expression language into some mathematical structure
is a function that assigns symbols of the language to operations of the structure
in an arity-preserving way:

• symbols of arity 0 are mapped to elements of the structure,
• symbols of arity 1 are mapped to endomorphisms on the structure,
• symbols of arity 2 are mapped to binary operations on the structure,
• etc. (we don’t need any higher arities today).

Variables that range over expressions are mapped to variables that range over
elements of the structure.

It is customary to write interpretation functions as “⟦−⟧” (with disambiguating
annotations if needed). 8



Interpreting Arithmetic Expressions
An obvious interpretation of arithmetic expressions is into the structure of
arithmetic, let’s say, on the natural numbers ℕ:

• The nullary symbol 0 is interpreted as the natural number 0: ⟦0⟧ = 0.
• The nullary symbol 1 is interpreted as the natural number 1: ⟦1⟧ = 1.
• The binary symbol + is interpreted as the addition operation: ⟦+⟧ = +.
• The binary symbol × is interpreted as the multiplication operation: ⟦×⟧ = ×.

It may seem like we’re just repeating ourselves, but remember that until we provide
an interpretation the symbols of an expression language don’t mean anything,
they’re just syntax.

With this interpretation:
⟦(𝑥 + 0) × (𝑦 + 1)⟧ = (𝑥 + 0) × (𝑦 + 1)

9



Alternative Interpretation of Arithmetic Expressions
To stress this point, here is a different interpretation of arithmetic expressions,
this time into the logical structure of the booleans 𝔹:

• The nullary symbol 0 is interpreted as boolean false: ⟦0⟧ = ⊥.
• The nullary symbol 1 is interpreted as the boolean true: ⟦1⟧ = ⊤.
• The binary symbol + is interpreted as the disjunction operation: ⟦+⟧ = ∨.
• The binary symbol × is interpreted as the conjunction operation: ⟦×⟧ = ∧.

With this interpretation:

⟦(𝑥 + 0) × (𝑦 + 1)⟧ = (𝑥 ∨ ⊥) ∧ (𝑦 ∨ ⊤)

10



Interpreting Regular Expressions
The intended interpretation of regular expressions over an alphabet Σ is into an
algebraic structure on string languages over Σ (i.e. subsets of Σ∗).

• for 𝑠 ∈ Σ, the nullary symbol 𝑠 is interpreted as the singleton language of the
length-one string 𝑠: ⟦𝑠⟧ = L{𝑠},

• the nullary symbol ∅ is interpreted as the empty language: ⟦∅⟧ = L∅,
• the nullary symbol ε is interpreted as the singleton language of the empty

string: ⟦ε⟧ = L{ε},
• the unary symbol ∗ is interpreted as the iteration operation on languages:

⟦∗⟧ = ∗,
• the binary symbol + is interpreted as the union operation on languages:

⟦+⟧ = ∪,
• the binary symbol ⋅ is interpreted as the concatenation operation on

languages: ⟦⋅⟧ = ⧺. 11



Interpreting Regular Expressions ctd.

So for our example regular expression ∅ + (1 ⋅ 𝑥∗) we have interpretation

⟦∅ + (1 ⋅ 𝑥∗)⟧ = L∅ ∪ (L{1} ⧺ 𝑥∗)

where the variable 𝑥 now ranges over string languages.

This is like an endomorphism of strings languages.
If we make a substitution for the variable then we get a string language.

For example, if 𝑥 ≔ L{0} then we get the language L∅ ∪ (L{1} ⧺ L{0}
∗),

which contains strings beginning with a 1 and followed by any number of 0s.

12



Equational Theories
A syntactic equation for an expression language is a pair of its expressions,
which we write suggestively as:

lexp = rexp

An equational theory for an expression language is a set of syntactic equations.

An interpretation ⟦−⟧ into a mathematical structure on the set A satisfies a
syntactic equation lexp = rexp involving variables 𝑥, ⋯, 𝑧 if the following
proposition is true:

∀ 𝑥, ⋯, 𝑧 ∈ A . ⟦lexp⟧ = ⟦rexp⟧

An interpretation satisfies an equational theory if it satisfies all its equations.

13



Equational Theory of Arithmetic

Here is an equational theory for our expression language of arithmentic:

0 + 𝑛 = 𝑛, 𝑛 + 0 = 𝑛,
1 × 𝑛 = 𝑛, 𝑛 × 1 = 𝑛,
0 × 𝑛 = 0, 𝑛 × 0 = 0,

(𝑙 + 𝑚) + 𝑛 = 𝑙 + (𝑚 + 𝑛), 𝑚 + 𝑛 = 𝑛 + 𝑚,
(𝑙 × 𝑚) × 𝑛 = 𝑙 × (𝑚 × 𝑛), 𝑚 × 𝑛 = 𝑛 × 𝑚,

𝑙 × (𝑚 + 𝑛) = (𝑙 × 𝑚) + (𝑙 × 𝑛), (𝑙 + 𝑚) × 𝑛 = (𝑙 × 𝑛) + (𝑙 × 𝑛),

14



Satisfying Arithmetic Equations
Consider the first syntactic equation,

0 + 𝑛 = 𝑛

The natural numbers interpretation of our language of arithmetic satisfies this
equation because,

∀ 𝑛 ∈ ℕ . 0 + 𝑛 = 𝑛.

The boolean interpretation of our language of arithmetic also satisfies this equation
because,

∀ 𝑏 ∈ 𝔹 . ⊥ ∨ 𝑏 = 𝑏.

Indeed, both interpretations satisfy all of the listed equations.
15



Equational Theory of Regular Expressions

Because of the properties of the operations of union, concatenation, and iteration
for string language, many equations between regular expressions are satisfied in
the string language interpretation.

For example:

16



Concatenation Semigroup
The following associative law for regular expressions:

(𝑥 ⋅ 𝑦) ⋅ 𝑧 = 𝑥 ⋅ (𝑦 ⋅ 𝑧)

is satisfied in the string language interpretation, because:

∀ L0, L1, L2 ⊆ Σ∗ . (L0 ⧺ L1) ⧺ L2 = L0 ⧺ (L1 ⧺ L2)

which, in turn is true because concatenation of strings is associative:

∀ 𝑤0, 𝑤1, 𝑤2 ∈ Σ∗ . (𝑤0 ⧺ 𝑤1) ⧺ 𝑤2 = 𝑤0 ⧺ (𝑤1 ⧺ 𝑤2)

We use this associativity to write regular expressions involving ⋅ (a.k.a.
juxtaposition) without explicit bracketing.

17



Concatenation Neutral and Absorbing Elements
The expression ε is a neutral element for ⋅:

ε ⋅ 𝑥 = 𝑥 = 𝑥 ⋅ ε
because the singleton language of the empty string L{ε} is neutral for language
concatenation, in turn because ε is neutral for string concatenation:

∀ 𝑤 ∈ Σ∗ . ε ⧺ 𝑤 = 𝑤 = 𝑤 ⧺ ε

The expression ∅ is an absorbing element for ⋅:
∅ ⋅ 𝑥 = ∅ = 𝑥 ⋅ ∅

because there are no strings in the empty language so:

∀ L ⊆ Σ∗ . L∅ ⧺ L = L∅ = L ⧺ L∅
18



Alternation Commutative Monoid
The following associative law for regular expressions:

(𝑥 + 𝑦) + 𝑧 = 𝑥 + (𝑦 + 𝑧)
is satisfied in the string language interpretation, because:

∀ L0, L1, L2 ⊆ Σ∗ . (L0 ∪ L1) ∪ L2 = L0 ∪ (L1 ∪ L2)
which, in turn is true because the union of sets is associative.
So we can unambiguously write multiple alternatives without brackets as well.

The union of sets is also commutative, so the commutative law for regular
expressions is satisfied:

𝑥 + 𝑦 = 𝑦 + 𝑥

Finally, the empty set is a neutral element for set union, satisfying the equation:
∅ + 𝑥 = 𝑥 = 𝑥 + ∅

19



More Equations
You can read more about the algebraic theory of string languages
in either Savage §4.3 or Hopcroft §3.4.

For example, concatenation distributes over alternation:

𝑥 ⋅ (𝑦 + 𝑧) = (𝑥 ⋅ 𝑦) + (𝑥 ⋅ 𝑧) and (𝑥 + 𝑦) ⋅ 𝑧 = (𝑥 ⋅ 𝑧) + (𝑦 ⋅ 𝑧),

iteration is idempotent:
(𝑥∗)∗ = 𝑥∗,

etc.

20



Abbreviations
For each word in a string language 𝑤 ≔ 𝑤0𝑤1⋯𝑤𝑛 ∈ Σ∗ we can define a regular
expression:

𝑤 ≔ 𝑤0 ⋅ 𝑤1 ⋅ … ⋅ 𝑤𝑛
Then we have

⟦𝑤⟧ = L{𝑤0} ⧺ L{𝑤1} ⧺⋯ ⧺ L{𝑤𝑛} = L{𝑤}
giving us singleton languages for any string.

For any subset of the alphabet S ≔ {𝑠0, 𝑠1, ⋯, 𝑠𝑛} ⊆ Σ we can define a regular
expression:

S ≔ 𝑠0 + 𝑠1 + ⋯ + 𝑠𝑛
Then we have

⟦S⟧ = L{𝑠0} ∪ L{𝑠1} ∪ ⋯ ∪ L{𝑠𝑛}
letting us define character classes such as digits, letters, punctuation, etc..
In programming it’s common to use “.” for “any character”.

21



Regular Operations Precedence

By convention the precedence order for regular expression operators is:
• ∗ binds most tightly,
• followed by ⋅ (a.k.a. juxtaposition),
• followed by +.

So “00 + 1∗” means (00) + (1∗).

Of course, you can always use explicit parentheses to to indicate a different order
of operations; e.g. 0(0 + 1)∗.

22



Regular Expressions for Languages

Write a regular expression for each of the following languages over the alphabet
{0, 1}:

• words that start with 0 or end with 1
• words containing exactly two 0s
• words containing an even number of 0s

23



Languages of Regular Expressions

Give a brief English description of the language corresponding to each of the
following regular expressions over the alphabet {0, 1}:

• 0 + (0 .∗ 0)
• (. . .)∗

• (0 0 + 1 1) .∗ (0 1 + 1 0)

24



Simplifying Regular Expressions

Use the fact that concatenation distributes over alternation to simplify the following
regular expression: 0 0 1 + 0 1 1

25



Regular Expressions Denote Regular Languages

Theorem
If 𝑟 is a closed regular expression (i.e. one with no variables) over alphabet Σ
then its string language interpretation ⟦𝑟⟧ is a regular language over Σ.

The strategy is to show that:
• for each symbol of arity 0 we can make an NFA to decide the language that is

the symbol’s interpretation,
• for each symbol of arity > 0 we can make an operation that transforms NFAs

in the manner specified by the symbol’s interpretation.

26



Nullary Symbols
For nullary symbol 𝑠 ∈ Σ the following NFA decides its interpretation, the language
L{𝑠}:

𝑠

For nullary symbol ∅ the following NFA decides its interpretation, the language L∅:

For nullary symbol ε the following NFA decides its interpretation, the language L{ε}:

27



Iteration
The unary symbol ∗ is interpreted as the iteration operation on languages ∗.

We saw previously how to transform an NFA that decides language L:

⋯

into an ε-NFA that decides language L∗:

⋯ε

ε

28



Union
The binary symbol + is interpreted as the union operation on languages ∪.

We saw previously how to transform NFAs that decide language L0 and L1:

⋯ ⋯

into an ε-NFA that decides language L0 ∪ L1:

⋯

⋯

ε

ε

ε

ε

29



Concatenation
The binary symbol ⋅ is interpreted as the concatenation operation on languages ⧺.

We saw previously how to transform NFAs that decide language L0 and L1:

⋯ ⋯

into an ε-NFA that decides language L0 ⧺ L1:

⋯ ⋯ε

30



Regular Languages are Described by Regular Expressions

Theorem
If L is a regular language over alphabet Σ then there is a closed regular expression
over Σ whose string language interpretation is L.

The strategy is to:
• define a generalization of ε-NFAs whose transitions are labeled by regular

expressions,
• reduce such a machine to a single regular expression by recursively removing

vertices.

31



Generalized NFAs
The state transition graph for a GNFA has edges labeled by regular expressions:

∅ ε

𝑟∗

𝑟0 + 𝑟1

𝑟0 𝑟1

WLOG we can assume that there is at most one edge between each ordered pair
of vertices and that every vertex has a loop. (Why?)

32



Recursive Reduction
We “sandwich” an NFA M with new start and accept states, 𝑞0 and 𝑞𝑓 :

𝑞0 ⋯ 𝑞𝑓
ε ε

We choose any vertex 𝑞𝑥 ∈ QM and remove it from the state set.

Then we repair the damage we caused by replacing each path we removed
[(𝑞𝑖), 𝑟0, (𝑞𝑥), 𝑟1, (𝑞𝑥), 𝑟2, (𝑞𝑗)] with a new edge 𝑟0 𝑟1

∗ 𝑟2 ∶ 𝑞𝑖 → 𝑞𝑗.

We repeat this process until Q = {𝑞0, 𝑞𝑓}, at which point the only remaining edge
𝑟 ∶ 𝑞0 → 𝑞𝑓 is labeled with a regular expression and ⟦𝑟⟧ = L(M).

33



Example: Recursive Reduction

𝑞1 𝑞2

𝑟12

𝑟21

𝑟11 𝑟22

Eliminating first 𝑞1 then 𝑞2 gives 𝑟11
∗ 𝑟12 (𝑟21 𝑟11

∗ 𝑟12 + 𝑟22)∗.

Eliminating first 𝑞2 then 𝑞1 gives (𝑟11 + 𝑟12 𝑟22
∗ 𝑟21)∗ 𝑟12 𝑟22

∗.

How are these related?

34



Relating Regular Expressions
The following equations of regular expressions are true in the string language
interpretation (see Savage §4.3):
alternative iteration: (𝑟 + 𝑠)∗ = (𝑟∗ 𝑠)∗ 𝑟∗ = 𝑠∗ (𝑟 𝑠∗)∗

iteration rotation: (𝑟 𝑠)∗ 𝑟 = 𝑟 (𝑠 𝑟)∗

With these we can calculate:

𝑟11
∗ 𝑟12 (𝑟21 𝑟11

∗ 𝑟12 + 𝑟22)∗

= [𝑎.𝑖.]
𝑟11

∗ 𝑟12 𝑟22
∗ (𝑟21 𝑟11

∗ 𝑟12 𝑟22
∗)∗

= [𝑖.𝑟.]
𝑟11

∗ 𝑟12 (𝑟22
∗ 𝑟21 𝑟11

∗ 𝑟12)∗ 𝑟22
∗

(𝑟11 + 𝑟12 𝑟22
∗ 𝑟21)∗ 𝑟12 𝑟22

∗

= [𝑎.𝑖.]
(𝑟11

∗ 𝑟12 𝑟22
∗ 𝑟21)∗ 𝑟11

∗ 𝑟12 𝑟22
∗

= [𝑖.𝑟.]
𝑟11

∗ 𝑟12 (𝑟22
∗ 𝑟21 𝑟11

∗ 𝑟12)∗ 𝑟22
∗

Although the order we eliminate vertices can give us different regular expressions,
they all represent the same language.

35


