
Non-Regular Languages

CSCI 2210

2023-10-04

Regular Languages
So far we have studied regular languages, the string languages that are:

• decidable by finite automata, equivalently,
• describable by regular expressions.

We have studies operations on string languages that preserve regularity, including:
• complementation
• intersection
• union
• concatenation
• iteration

2

Regular Languages
A natural question to ask is:

• Are all string languages regular?
The answer turns out to be “no”.
A natural follow-up question is:

• How can we know that a language is not regular.
So far we have given criteria to show that a language is regular:
produce a finite automaton that decides it
or a regular expression that describes it.
But what if we can’t?
Maybe we’re just not being creative and clever enough.

3

Showing a Language is Not Regular

We can use the following strategy to prove that a string language is not regular:
• identify a property that all regular languages have,
• show that this language does not have that property.

There are a number of properties we could use. One of the easiest to understand
involves cycles in state transition graphs of DFAs.

4

Forcing Cycles in Graphs

Theorem
If G is a nonempty finite graph with 𝑛 vertices, and 𝑝 is a path in G with |𝑝| ≥ 𝑛
then 𝑝 must contain a cycle (a non-stationary path whose source and target
vertices are equal).

This is because the first edge in 𝑝 visits two (not necessarily distinct) vertices, and
each subsequent edge increases this number by one.
So a path of length 𝑛 must visit 𝑛 + 1 vertices.
But there are only 𝑛 vertices in the graph, so they can’t all be distinct.

5

Forcing Cycles in Strate Transition Graphs
Consider the following state transition graph for a DFA M:

𝑞0 𝑞1

1

1

0 0

M accepts the word 𝑤 ≔ 0 1 1 0,
and 4 = |𝑤| ≥ |Q| = 2.
So the following path through the state transition graph must contain a cycle:

[(𝑞0), 0, (𝑞0), 1, (𝑞1), 1, (𝑞0), 0, (𝑞0)]

6

Pumping Paths in Graphs
Whenever we have a path that contains a cycle in a graph:

[(𝑣0), 𝑒0, ⋯, (𝑣𝑖), 𝑒𝑖, ⋯, (𝑣𝑖)⏟⏟⏟⏟⏟⏟⏟
cycle

, 𝑒𝑗, ⋯, (𝑣𝑓)]

we can “pump” it by iterating the cycle any number of times.
We can do this in two ways:
pump down the path by omitting the cycle (iterating it zero times),

[(𝑣0), 𝑒0, ⋯, (𝑣𝑖)⏟
cycle omitted

, 𝑒𝑗, ⋯, (𝑣𝑓)]

pump up the path by repeating the cycle (iterating it two or more times).
[(𝑣0), 𝑒0, ⋯, (𝑣𝑖), 𝑒𝑖, ⋯, (𝑣𝑖), 𝑒𝑖, ⋯, (𝑣𝑖)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

cycle repeated

, 𝑒𝑗, ⋯, (𝑣𝑓)]

Pumping alway results in a path that is parallel to the original path. 7

Pumping Cycles in State Transition Graphs
Because the DFA

𝑞0 𝑞1

1

1

0 0

accepts the word 0 1 1 0 whose path through the transition graph includes the cycle

[(𝑞0), 1, (𝑞1), 1, (𝑞0)]

it must also accept:
• the “pumped down” word 0 0 and
• the “pumped up” word 0 1 1 1 1 0.

8

Bounding Path Segment Lengths
Recall:
Theorem
If G is a nonempty finite graph with 𝑛 vertices, and 𝑝 is a path in G with |𝑝| ≥ 𝑛
then 𝑝 must contain a cycle.

We can divide the path 𝑝 into three consecutive segments:
a prefix 𝑥, a cycle 𝑦, and a suffix 𝑧, such that 𝑝 = 𝑥 ⧺ 𝑦 ⧺ 𝑧.
What can we say about the lengths of these segments?

• If |𝑦| > 𝑛 then we could have found a smaller cycle instead.
• If |𝑥| > 𝑛 then we could have found an earlier cycle instead.
• If |𝑧| > 𝑛 then we could have found an later cycle instead.

9

Bounding Path Segment Lengths ctd.

In fact, we can do a bit better:
Theorem
If G is a nonempty finite graph with 𝑛 vertices, and 𝑝 is a path in G with |𝑝| ≥ 𝑛
then there are paths 𝑥 , 𝑦, and 𝑧 such that 𝑦 is a cycle, 𝑝 = 𝑥 ⧺ 𝑦 ⧺ 𝑧, and either
one of the following conditions are met:

• |𝑥 ⧺ 𝑦| ≤ 𝑛,
• |𝑦 ⧺ 𝑧| ≤ 𝑛

You can use the first one to get a “small, early” cycle and the second one to get a
“small, late” cycle.

10

Pumping Lemma for Regular Languages

This is the justification for the following result:

Theorem (Pumping Lemma)
Every regular language L ⊆ Σ∗ has a number 𝑝(L) ∈ ℕ (its “pumping length”) so
that for any word 𝑤 ∈ L if |𝑤| ≥ 𝑝(L) then there are words 𝑥, 𝑦, 𝑧 ∈ Σ∗ with 𝑦 ≠ ε
satisfying the conditions:
decomposition: 𝑤 = 𝑥 ⋅ 𝑦 ⋅ 𝑧,
pumping: ∀ 𝑛 ∈ ℕ . 𝑥 ⋅ 𝑦𝑛 ⋅ 𝑧 ∈ L
bounding: |𝑥 ⋅ 𝑦| ≤ 𝑝(L) (or, alternatively, |𝑦 ⋅ 𝑧| ≤ 𝑝(L))

11

Showing a Language is Not Regular
We can use the pumping lemma to show that a language L is not regular as
follows:
1. suppose that L is regular,
2. in this case L has a pumping length 𝑝(L),
3. we don’t know what 𝑝(L) is, but we can use it to give an algorithm for

constructing a carefully chosen word 𝑤 ∈ L with |𝑤| ≥ 𝑝(L),
4. apply the pumping lemma to get a decomposition for this word 𝑤 = 𝑥 ⋅ 𝑦 ⋅ 𝑧,
5. use the pumping and/or bounding conditions of the pumping lemma to derive

a contradiction,
6. conclude that L could not have been regular after all.

12

Example: A Nonregular Language
The language L whose words have any number of 0s followed by an equal number
of 1s is not regular.
1. suppose L is regular,
2. then L has a pumping length 𝑝,
3. consider the word 𝑤 ≔ 0𝑝 ⋅ 1𝑝. Observe that 𝑤 ∈ L and |𝑤| ≥ 𝑝,
4. by the pumping lemma we get a decomposition 𝑤 = 𝑥 ⋅ 𝑦 ⋅ 𝑧.
5. By the pumping condition we can pump down 𝑤 to get 𝑤′ ≔ 𝑥 ⋅ 𝑧 ∈ L,

by the bounding condition |𝑥 ⋅ 𝑦| ≤ 𝑝 so 𝑥 and 𝑦 contain only 0s,
because 𝑦 ≠ ε, the word 𝑤′ has fewer 0s than 1s, so 𝑤′ ∉ L.

6. So L can’t be a regular language.
13

Example: Another Nonregular Language
The language L of palindromes is not regular.
1. suppose L is regular,
2. then L has a pumping length 𝑝,
3. consider the word 𝑤 ≔ 0𝑝 ⋅ 1 ⋅ 0𝑝. Observe that 𝑤 ∈ L and |𝑤| ≥ 𝑝,
4. by the pumping lemma we get a decomposition 𝑤 = 𝑥 ⋅ 𝑦 ⋅ 𝑧.
5. By the pumping condition we can pump down 𝑤 to get 𝑤′ ≔ 𝑥 ⋅ 𝑧 ∈ L,

by the bounding condition |𝑥 ⋅ 𝑦| ≤ 𝑝 so 𝑥 and 𝑦 contain only 0s,
because 𝑦 ≠ ε, the word 𝑤′ has fewer 0s before the 1 than after, so 𝑤′ ∉ L.

6. So L can’t be a regular language.

14

