
Nondeterminism

CSCI 2210

2023-09-18 and 2023-09-20

Union Language Revisited

Last time we constructed a DFA for the union of regular languages.

It took some of work to encode pairs of states as states,
and pairs of transitions as transitions.

What if we could just guess whether 𝑤 ∈ L(M0) or 𝑤 ∈ L(M1) and then
run the right machine.

2

Determinism
The behavior of a DFA is deterministic because the state transition function
δ ∶ Q × Σ → Q prescribes exactly one next state for each current state and
input symbol.

To solve the union language problem, it would suffice to have two possible
transitions for each symbol out of the start state.

𝑞0

M0 M1

0

1 0

1

We will ask for such nondeterministic transition not just for the start state,
but for all states.

3

deterministic Finite Automata

A deterministic finite automaton (“DFA”) M has the following components:
input alphabet: a nonempty finite set of symbols Σ,
state set: a nonempty finite set of states Q,
start state: a chosen state 𝑞0 ∈ Q,
accept state set: a chosen subset of states F ⊆ Q,
state transition function: a function δ ∶ Q × Σ → Q.

4

Nondeterministic Finite Automata

A nondeterministic finite automaton (“NFA”) M has the following components:
input alphabet: a nonempty finite set of symbols Σ,
state set: a nonempty finite set of states Q,
start state: a chosen state 𝑞0 ∈ Q,
accept state set: a chosen subset of states F ⊆ Q,
state transition relation: a relation Δ ∶ Q × Σ ⇸ Q.

5

NFA State Transition Graph

We can represent an NFA M using a state transition graph.

The vertex set is Q.
For vertices 𝑞𝑎, 𝑞𝑏 ∈ Q and alphabet symbol 𝑠 ∈ Σ there is an edge
𝑠 ∶ 𝑞𝑎 → 𝑞𝑏 just in case Δ ((𝑞𝑎 , 𝑠) ⤍ 𝑞𝑏).
In a diagram for this graph we annotate the vertex 𝑞0 and those of F.

6

Example: NFA State Transition Graph Diagram
Let M−01 be the NFA specified by:

𝑞0 𝑞1 𝑞2
0

0, 1

1

This means:
• Σ = {0, 1},
• Q = {𝑞0, 𝑞1, 𝑞2},
• 𝑞0 = 𝑞0,
• F = {𝑞2},

• Δ =
𝑞0 𝑞1 𝑞2

𝑞0 {0, 1} {0} { }
𝑞1 { } { } {1}
𝑞2 { } { } { }

7

Language of an NFA: Operational Semantics

Each NFA M over alphabet Σ determines a language L(M)
according to the following operational semantics.
Given an input string 𝑤 = [𝑤0, 𝑤1, ⋯, 𝑤𝑛] ∈ Σ∗:

• M begins in the start state 𝑞0,
• M inspects the symbols of 𝑤 left-to-right one at a time,
• If M is in state 𝑞𝑎 inspecting symbol 𝑤𝑖 then M may transition to state 𝑞𝑏

if Δ ((𝑞𝑎 , 𝑤𝑖) ⤍ 𝑞𝑏),
• Upon exhausting 𝑤, there is a set of states Q𝑓 that M may be in,
• We say 𝑤 ∈ L(M) just in case Q𝑓 ∩ F ≠ ∅.

8

Language of an NFA: State Transition Graph Interpretation
For a NFA M, each word 𝑤 ∈ Σ∗ determines a set of paths {𝑝𝑘 ∶ 𝑞0 → 𝑞𝑓𝑘

} in the
state transition graph G(M).
The state transition relation Δ determines where these paths go at each step.
At the 𝑖th symbol in 𝑤, i.e. 𝑤𝑖, we have a set of length 𝑖 paths in G(M) all with
source 𝑞0 and edges labeled [𝑤0, 𝑤1, ⋯, 𝑤𝑖−1].
Let 𝑝𝑘 ∶ 𝑞0 → 𝑞𝑘 be such a path. For each edge 𝑤𝑖 ∶ 𝑞𝑘 → 𝑞𝑙 we make
the length 𝑖 + 1 path 𝑝𝑘 ⧺ [𝑤𝑖].
We take the union of all paths obtained by extending each path 𝑝𝑘 by each
𝑤𝑖-labeled edge.
A path 𝑞0 → 𝑞𝑓 constructed in this way is called a run of M.
NFA M accepts word 𝑤 just in case there is an accepting run of M labeled by 𝑤.

9

Example: Language of M−01

M−01 ≔ 𝑞0 𝑞1 𝑞2
0

0, 1

1

determines the language of words with suffix 01.
for example:

• word 01 is accepted by run [(𝑞0), 0, (𝑞1), 1, (𝑞2)]
• word 0101 is accepted by run [(𝑞0), 0, (𝑞0), 1, (𝑞0), 0, (𝑞1), 1, (𝑞2)]

10

Activity: Language of an NFA

Verify that the following state transition graph represents an NFA over alphabet
Σ ≔ {0, 1} and give a description of its language.

𝑞0

𝑞1 𝑞2

𝑞3

0 1

0, 1 0, 1

1 0

11

NFA Variations

There are several common variations of NFAs.

Fortunately, they are all equivalent in that they can be translated into one another.

12

Variation: NFA with Transition Function
Instead of a state transition relation:

Δ ∶ Q × Σ ⇸ Q

we can specify a set-valued state transition function:

δ ∶ Q × Σ → ℘(Q)

This is just the “powerset trick” we learned in week 1:

Δ ((𝑞 , 𝑠) ⤍ 𝑞′) just in case 𝑞′ ∈ δ(𝑞 , 𝑠)

13

Variation: NFA with Start State Set

Instead of a single start state 𝑞0

we can specify a nonempty set of start states I
Such a machine accepts a word 𝑤 just in case there is a run 𝑞𝑖 → 𝑞𝑓
with 𝑞𝑖 ∈ I and 𝑞𝑓 ∈ F.

We can translate such a machine back to our original setting by
forgetting that the states in I are start states and adding a new start state 𝑞0
with an edge 𝑠 ∶ 𝑞0 → 𝑞𝑗 just in case ∃ 𝑞𝑖 ∈ I . 𝑠 ∶ 𝑞𝑖 → 𝑞𝑗.
The new start state is an accept state if any of the original start states were.

14

Example: NFA with Start State Set

0

0

0 0, 1

1

1

10, 1

0

0

1

1

15

Variation: NFA with String-Labeled Edges

Instead of transitions that act on symbols:

Δ ∶ Q × Σ ⇸ Q

we can specify transitions that act on strings:

Δ′ ∶ Q × Σ∗ ⇸ Q

We translate this back to our original setting as follows.

16

Variation: NFA with String-Labeled Edges of Length > 1

For |𝑠| > 1,

replace edge:

𝑞𝑖 𝑞𝑗
𝑠0𝑠1⋯𝑠𝑛

with edges:

𝑞𝑖 𝑞′
𝑖 𝑞𝑗

𝑠0 𝑠1⋯𝑠𝑛

until all labels have |𝑠| = 1.

17

Variation: NFA with String-Labeled Edges of Length < 1
If |𝑠| = 0 we call this an empty-string transition or ε-transition.

replace:

𝑠 ε ⋯ ε

with:

𝑠 𝑠 𝑠

⋯

𝑠

and ε-transitions from 𝑞0 with new start nodes, then eliminate multiple start nodes.
18

NFA Language Constructions

Clearly, every language decidable by a DFA is decidable by an NFA,
because a DFA is just an NFA where the state transition relation is
single-valued and total (i.e. there is always exactly one possible transition).
So the following languages are decidable by NFAs:

• the empty language
• all singleton languages
• the union of DFA-decidable languages
• the intersection of DFA-decidable languages (homework)

19

Singleton Languages Revisited
With DFAs we needed a “dump state” and lots of failure transitions to account for
falling off of the “happy path”.

⋯

𝑞fail

𝑤0 𝑤1 𝑤𝑛

Σ − {𝑤0}
Σ − {𝑤1}

Σ
Σ

With NFAs we only need the happy path:

⋯𝑤0 𝑤1 𝑤𝑛

20

Union Languages Revisited
With DFAs we needed a cartesian product construction to build a DFA
whose states and transitions were ordered pairs of those of the input machines.

With NFAs we can either use multiple start states, or else use ε-transitions
to nondeterministically fork to the start states of the input machines
and join from their accept states:

⋯

⋯

⋯

⋯

ε

ε

ε

ε

WLOG, we can assume an ε-NFA has one accept state (homework).
21

Concatenated Languages

For languages L0 and L1, the concatenated language L0 ⧺ L1 is defined as

L0 ⧺ L1 ≔ {𝑤0 ⧺ 𝑤1 | 𝑤0 ∈ L0 and 𝑤1 ∈ L1}

E.g. if L0 = {low, slow} and L1 = {ly, -down} then

L0 ⧺ L1 =
ly -down

low lowly low-down
slow slowly slow-down

22

Concatenation Closure

Let L0 ≔ L(M0) and L1 ≔ L(M1) be the languages decided by two NFAs.
Then L0 ⧺ L1 is decided by an ε-NFA.

We just add ε-transitions from the accept state(s) of M0 to the start state(s) of M1:

⋯ ⋯⋯ ⋯ε

23

Iterated Languages

For language L, the iterated language L∗ is given by the recursive definition,

L∗ ≔ Lε ∪ (L ⧺ L∗)

Expanding this, we see

L∗ = Lε ∪ L ∪ (L ⧺ L) ∪ (L ⧺ L ⧺ L) ∪ ⋯

So the words of L∗ are concatenations of all finite sequences of words of L
(including the empty one).

24

Iteration Closure
If L be the languages decided an NFA M then L∗ is decided by an ε-NFA.
We add:

• a new accepting start state (for sequences of <1 L-words),
• an ε-transition from the new to the old start state (for sequences of =1 L-word)
• ε-transitions from the old accept state(s) to the old start state (for sequences

of >1 L-words)

⋯ε

ε

25

Equivalence of NFAs and DFAs

NFAs are easier to work with than DFAs. Intuitively, they seem more powerful.
But in fact they are equivalent in power:

Theorem
A language is decidable by an NFA just in case it is decidable by a DFA.

One direction is easy: every DFA can be regarded as an NFA that happens to be
deterministic.
The main idea for the other direction is the powerset construction (synonym
“subset construction”).

26

Cartesian Product Construction Revisited
Before describing this construction, let’s recall how we built a DFA
for the union of two languages.
We needed to build a DFA that could simulate a pair of DFAs.
We did this using the cartesian product:
states were ordered pairs of states,
transitions were ordered pairs of transitions.

In contrast, simulating an NFA is equivalent simulating a set of DFAs:
one DFA for each nondeterministic choice made by the NFA.
This set of DFAs can’t be infinitely large: its size is bounded by
the number of possible subsets of states.

27

Powerset Construction
Let M be a ε-free NFA (Σ , Q , 𝑞0 , F , Δ). We make the DFA D(M) with:
input alphabet: Σ
state set: ℘(Q)
start state: {𝑞0}
accept state set: {S ⊆ Q | S ∩ F ≠ ∅}
state transition function: We construct δ ∶ ℘(Q) × Σ → ℘(Q)
from Δ ∶ Q × Σ ⇸ Q as follows:
by the powerset trick the relation Δ is equivalent to a function
δ′ ∶ Q × Σ → ℘(Q).
We define δ(T , 𝑠) ≔ ⋃𝑞∈T(δ′(𝑞 , 𝑠)).

28

