
Lambda-Calculus

CSCI 2210

2023-11-06 — 2023-11-13

Language-Based Models of Computable Functions

So far, each time we introduced a machine-based model of computation,
we also introduced a corresponding language-based model:

• finite state automata — regular expressions,
• pushdown automata — context-free grammars,
• Turing machines — ???

With Turing machines we are spoiled for choice.

Your favorite programming language is probably Turing complete.

2

The Original Programming Language

We will study an extremely simple programming language,

which predates both electronic computers and Turing machines.

It is in some sense the original programming language.

The λ-calculus was introduced in the early 1930s by Alonzo Church
to study mathematical functions.

3

Lambda Terms
We start with a countably infinite collection of variables, V.

We typically write variables using letters like 𝑥, 𝑦, 𝑧, 𝑣1, 𝑣2, etc.

An expression or term of the λ-calculus is given by the following inductive
definition:

variable: if 𝑥 ∈ V then 𝑥 is a term,
application: if M and N are terms then (M N) is a term,
abstraction: if 𝑥 is a variable and M is a term then (λ 𝑥 . M) is a term.

The set of λ-calculus terms is called “Λ”.

4

Notational Conventions
Every term has a unique parse tree with internal nodes var, app, and abs.
To simplify notation we observe the following conventions:

• Drop outermost parentheses, so:
M N ≔ (M N)

• Application is left associative, so:
M N P ≔ (M N) P

• The body of an abstraction extends as far as syntactically possible, so:
λ 𝑥 . M N ≔ λ 𝑥 . (M N)

• Successive abstractions can be contracted, so:
λ 𝑥𝑦𝑧 . M ≔ λ 𝑥 . λ 𝑦 . λ 𝑧 . M

5

Variable Binding
The “λ” in an abstraction binds occurrences of its variable within its scope.

Each non-binding occurrence of a variable is bound by the innermost abstraction
of the same variable.

If a variable occurrence is not bound by any abstraction, then it is free.

λ 𝑥 . (λ 𝑦 . 𝑥 𝑦)(λ 𝑥 . 𝑥 𝑦)

free

• The set of all variables occurring in term M is var(M).
• The set of free variables occurring in term M is fv(M).

6

Bound Variable Renaming
The renaming of variable 𝑥 to variable 𝑦 in term M, written “M{𝑦/𝑥}”,
replaces all occurrences of 𝑥 with 𝑦 in M.

The purpose of bound variables is to specify the binding structure of terms.
We don’t actually care what bound variables are called.

So we adopt the following inference rule:

𝑦 ∉ var(M)
λ 𝑥 . M =α λ 𝑦 . M{𝑦/𝑥} α

This says if 𝑦 does not occur in M then the term λ 𝑥 . M is α-equivalent to the term
obtained by renaming 𝑥 to 𝑦 in M and binding the result with 𝑦 instead of with 𝑥.

7

Alpha-Equivalence of Terms
The inference rule α induces an equivalence relation on terms:

M =α M α-refl
M =α N
N =α M α-symm M =α N N =α P

M =α P α-trans

which is moreover a congruence, compatible with application and abstraction:

M =α M′ N =α N′

M N =α M′ N′ α-app M =α N
λ 𝑥 . M =α λ 𝑥 . N α-abs

In λ-calculus we don’t distinguish between α-equivalent terms and write “=” for =α.
8

Derivation Trees

We can combine inference rules into formal proofs called derivation trees:

𝑦 ∉ var(𝑥)
λ 𝑥 . 𝑥 =α λ 𝑦 . 𝑦 α 𝑧 ∉ var(𝑦)

λ 𝑦 . 𝑦 =α λ 𝑧 . 𝑧 α

λ 𝑥 . 𝑥 =α λ 𝑧 . 𝑧 α-trans

In order for such a tree to represent a completed proof, all of its leaves must be
closed.

9

Substitution Desiderata
The most important operation in λ-calculus is the substitution of a term for a
free variable in another term.

The notation “M[N/𝑥]” represents the substitution of N for 𝑥 in M.

When performing substitution we don’t want to disturb the binding structure of
terms:

• we don’t want to substitute for bound variables in M,

so (λ 𝑥 . 𝑥)[𝑦/𝑥] ≠ λ 𝑥 . 𝑦

• we don’t want to capture free variables in N,

so (λ 𝑦 . 𝑥)[𝑦/𝑥] ≠ λ 𝑦 . 𝑦

10

Substitution Definition
The substitution operation M[N/𝑥] is defined by recursion on the term M:

𝑥[N/𝑥] = N
𝑦[N/𝑥] = 𝑦 if 𝑦 ≠ 𝑥

(M P)[N/𝑥] = (M[N/𝑥]) (P[N/𝑥])
(λ 𝑥 . M)[N/𝑥] = λ 𝑥 . M
(λ 𝑦 . M)[N/𝑥] = λ 𝑦 . (M[N/𝑥]) if 𝑥 ≠ 𝑦 and 𝑦 ∉ fv(N)
(λ 𝑦 . M)[N/𝑥] = λ 𝑧 . (M{𝑧/𝑦}[N/𝑥]) if 𝑥 ≠ 𝑦, 𝑦 ∈ fv(N) and 𝑧 fresh

11

Beta-Reduction of Terms
An application of an abstraction to a term is called a β-reducible expression,
or “β-redex”:

application
⏞⏞⏞⏞⏞(λ 𝑥 . M⏟
abstraction

) N

The idea is that of applying a function to an argument.

The operation of β-reduction relates a β-redex to the term obtained by
substituting the argument for the bound variable in the body of the function.
(Just like calling a function in programming!)

(λ 𝑥 . M) N⏟⏟⏟⏟⏟
redex

→β M[N/𝑥]⏟
reduct

12

Lambda-Calculus as a Programming Language
As a programming language, the λ-calculus computes by repeatedly contracting
redexes to their reducts:

(λ 𝑥 . 𝑦) ((λ 𝑧 . 𝑧 𝑧) (λ 𝑤 . 𝑤))
→β (λ 𝑥 . 𝑦) ((λ 𝑤 . 𝑤) (λ 𝑤 . 𝑤))
→β (λ 𝑥 . 𝑦) (λ 𝑤 . 𝑤)
→β 𝑦

A term containing no β-redexes is called a β-normal form.

If M reduces to a normal form N in zero or more β-steps then M β-evaluates to N,
written “M ↓β N”.

13

Beta-Reduction Relation
Formally, β is a relation of λ-terms that relates redexes to their reducts:

β ∶ Λ ⇸ Λ given by β ((λ 𝑥 . M) N ⤍ M[N/𝑥])

It is customary to write this as:

(λ 𝑥 . M) N →β M[N/𝑥] β

This relation is extended to make it compatible with application and abstraction:
M →β M′

M N →β M′ N
β-app0

N →β N′

M N →β M N′ β-app1
M →β M′

λ 𝑥 . M →β λ 𝑥 . M′ β-abs

The reflexive-transitive closure of β is the preorder relation β∗ (“→β∗” or “↠β”).

The reflexive-symmetric-transitive closure is the equivalence relation =β.
14

Evaluation Strategies
As a programming language, the λ-calculus is underspecified.
We could have done either

(λ 𝑥 . 𝑦) ((λ 𝑧 . 𝑧 𝑧) (λ 𝑤 . 𝑤))
→β (λ 𝑥 . 𝑦) ((λ 𝑤 . 𝑤) (λ 𝑤 . 𝑤))
→β (λ 𝑥 . 𝑦) (λ 𝑤 . 𝑤)
→β 𝑦

or (λ 𝑥 . 𝑦) ((λ 𝑧 . 𝑧 𝑧) (λ 𝑤 . 𝑤))
→β 𝑦

Try it yourself at https://lambdacalc.io/!
A choice of which redex(es) to reduce constitutes an evaluation strategy.
This brings up some questions:

• Do all strategies result in normal forms?
• Can different strategies give different normal forms?

15

https://lambdacalc.io/

Nontermination

Not all λ-terms have normal forms.

Consider the term
Ω ≔ (λ 𝑥 . 𝑥 𝑥) (λ 𝑥 . 𝑥 𝑥)

This term has only one redex to reduce:

(λ 𝑥 . 𝑥 𝑥) (λ 𝑥 . 𝑥 𝑥)
→β (λ 𝑥 . 𝑥 𝑥) (λ 𝑥 . 𝑥 𝑥)
→β …

16

Undecidability of Normalizability

Reducing a λ-term to a normal form is like running a Turing machine until it halts to
see what it outputs.

We have seen that the halting problem for Turing machines is undecidable.

The situation for reducing λ-terms is just as bad.

Theorem (Turing)
The problem of deciding whether a λ-term has a normal form is undecidable.

17

Confluence
Although in general we can’t know whether a term has a normal form without trying
to reduce it, the evaluation strategy we use to do so is not critical:

Theorem (Church & Rosser, Shroer)
The relation β∗ ∶ Λ ⇸ Λ is confluent in the sense that for any term M,

∀ N0, N1 . if M →β∗ N0 and M →β∗ N1 then ∃ P . N0 →β∗ P and N1 →β∗ P.

M

N0 N1

P

β∗ β∗

β∗ β∗

18

Uniqueness of Normal Forms
Corollary
If a normal form exists for a term then that normal form is unique.

Proof.
Suppose M ↓β N0 and M ↓β N1. Then by confluence:

M

N0 N1

P

β∗ β∗

β∗ β∗

the term P must be N0 because N0 is normal;
similarly, P must be N1 because N1 is normal.
So N0 = N1 by transitivity of equality.

19

Fixed Points

A fixed point of a function 𝑓 is an argument 𝑥 such that 𝑓(𝑥) = 𝑥.

The function 𝑓(𝑥) ≔ 𝑥2 has two fixed points, while 𝑓(𝑥) ≔ 𝑥 + 1 has none.

In λ-calculus every term has a fixed point.

Moreover, there is a single term that can compute a fixed point of any term.

20

Curry’s Fixed Point Combinator
The Y-combinator is the term Y ≔ λ 𝑓 . (λ 𝑥 . 𝑓 (𝑥 𝑥)) (λ 𝑥 . 𝑓 (𝑥 𝑥)).
Theorem
The Y-combinator computes a fixed point for any term M, in the sense that
M (Y M) =β Y M.

Proof.
Y M

≔ (λ 𝑓 . (λ 𝑥 . 𝑓 (𝑥 𝑥)) (λ 𝑥 . 𝑓 (𝑥 𝑥))) M
→β (λ 𝑥 . M (𝑥 𝑥)) (λ 𝑥 . M (𝑥 𝑥))
→β M ((λ 𝑥 . M (𝑥 𝑥)) (λ 𝑥 . M (𝑥 𝑥)))
←β M ((λ 𝑓 . (λ 𝑥 . 𝑓 (𝑥 𝑥)) (λ 𝑥 . 𝑓 (𝑥 𝑥))) M)
≕ M (Y M)

21

Programming in λ-Calculus
We claimed that λ-calculus is a programming language.
So far we have just pure functions. Where are the

• booleans?
• numbers?
• tuples?
• lists?
• recursive functions?
• etc.

Amazingly, we can conjure them all out of pure functions.
22

Booleans
The following λ-terms are known as Church booleans:

⊤ ≔ λ 𝑥 𝑦 . 𝑥
⊥ ≔ λ 𝑥 𝑦 . 𝑦
¬ ≔ λ 𝑏 . 𝑏 ⊥ ⊤
∧ ≔ λ 𝑥 𝑦 . 𝑥 𝑦 ⊥
∨ ≔ λ 𝑥 𝑦 . 𝑥 ⊤ 𝑦
if ≔ λ 𝑏 𝑥 𝑦 . 𝑏 𝑥 𝑦

Experiment with evaluating boolean expressions at https://lambdacalc.io/.
23

https://lambdacalc.io/

Natural Numbers
The following λ-terms are known as Church numerals:

0 ≔ λ 𝑓 𝑥 . 𝑥
S ≔ λ 𝑛 𝑓 𝑥 . 𝑓 (𝑛 𝑓 𝑥)
+ ≔ λ 𝑚 𝑛 . 𝑚 S 𝑛
× ≔ λ 𝑚 𝑛 𝑓 . 𝑚 (𝑛 𝑓)

Indeed, we can encode all the standard arithmetic functions in λ-calculus.
A tricky one is the predecessor 𝑛 − 1, which stumped people for a long time.
Church’s student Kleene cracked it while having his wisdom teeth extracted.
The trick is to encode ordered pairs (𝑚 , 𝑚 + 1), increment them using S,
and take the first projection when the second projection is 𝑛.

24

Recursive Functions
We can use fixed points to write recursive functions. Consider the factorial:
fact n = if (is0 n) 1 (× n (fact (pred n)))

fact = λ n . if (is0 n) 1 (× n (fact (pred n)))

fact = (λ f n . if (is0 n) 1 (× n (f (pred n)))) fact

Now fact is defined to be some function applied to fact. Call that function “F”:
F ≔ λ f n . if (is0 n) 1 (× n (f (pred n)))

Then fact = F fact. So fact is a fixed point of F.
fact = Y F

We can use this to evaluate fact 2.
“Let us calculate” – Leibniz

25

Recursive Functions in Python
This works in Python too, we just need to add one more layer of functions
to interrupt Python’s eager evaluation:
Y = lambda f : \

(lambda x : f (lambda y : x (x) (y))) \
(lambda x : f (lambda y : x (x) (y)))

Then we can write the non-recursive function of which factorial is a fixed point:
F = lambda f : lambda n : 1 if n == 0 else n * f (n - 1)

And define the recursive factorial function as its fixed point:
fact = Y (F)

to compute larger factorials quickly.
26

Lambda-Computable Functions

Theorem (Turing)
Every function ℕ → ℕ that is computable by Turing machine
is computable in the λ-calculus.

27

