Lambda-Calculus

CSCI 2210

2023-11-06 - 2023-11-13

Language-Based Models of Computable Functions

So far, each time we introduced a machine-based model of computation, we also introduced a corresponding language-based model:

- finite state automata - regular expressions,
- pushdown automata - context-free grammars,
- Turing machines - ???

With Turing machines we are spoiled for choice.
Your favorite programming language is probably Turing complete.

The Original Programming Language

We will study an extremely simple programming language,
which predates both electronic computers and Turing machines.

It is in some sense the original programming language.

The λ-calculus was introduced in the early 1930s by Alonzo Church to study mathematical functions.

Lambda Terms

We start with a countably infinite collection of variables, V.
We typically write variables using letters like x, y, z, v_{1}, v_{2}, etc.
An expression or term of the λ-calculus is given by the following inductive definition:
variable: if $x \in \mathrm{~V}$ then x is a term,
application: if M and N are terms then (MN) is a term, abstraction: if x is a variable and M is a term then $(\lambda x . \mathrm{M})$ is a term.

The set of λ-calculus terms is called " Λ ".

Notational Conventions

Every term has a unique parse tree with internal nodes var, app, and abs.
To simplify notation we observe the following conventions:

- Drop outermost parentheses, so:

$$
M N:=(\mathrm{MN})
$$

- Application is left associative, so:

$$
\mathrm{MNP}:=(\mathrm{MN}) \mathrm{P}
$$

- The body of an abstraction extends as far as syntactically possible, so:

$$
\lambda x \cdot \mathrm{MN}:=\lambda x \cdot(\mathrm{MN})
$$

- Successive abstractions can be contracted, so:

$$
\lambda x y z \cdot \mathrm{M}:=\lambda x \cdot \lambda y \cdot \lambda z \cdot \mathrm{M}
$$

Variable Binding

The " λ " in an abstraction binds occurrences of its variable within its scope.
Each non-binding occurrence of a variable is bound by the innermost abstraction of the same variable.

If a variable occurrence is not bound by any abstraction, then it is free.

- The set of all variables occurring in term M is $\operatorname{var}(\mathrm{M})$.
- The set of free variables occurring in term M is $f v(M)$.

Bound Variable Renaming

The renaming of variable x to variable y in term M, written " $\mathrm{M}\{y / x\}$ ", replaces all occurrences of x with y in M.

The purpose of bound variables is to specify the binding structure of terms. We don't actually care what bound variables are called.

So we adopt the following inference rule:

$$
\frac{y \notin \operatorname{var}(\mathrm{M})}{\lambda x \cdot \mathrm{M}={ }_{\alpha} \lambda y \cdot \mathrm{M}\{y / x\}} \alpha
$$

This says if y does not occur in M then the term λx. M is α-equivalent to the term obtained by renaming x to y in M and binding the result with y instead of with x.

Alpha-Equivalence of Terms

The inference rule α induces an equivalence relation on terms:

$$
\overline{\mathrm{M}={ }_{\alpha} \mathrm{M}} \alpha \text {-refl } \quad \frac{\mathrm{M}={ }_{\alpha} \mathrm{N}}{\mathrm{~N}={ }_{\alpha} \mathrm{M}} \alpha \text {-symm } \quad \frac{\mathrm{M}={ }_{\alpha} \mathrm{N} \quad \mathrm{~N}={ }_{\alpha} \mathrm{P}}{\mathrm{M}={ }_{\alpha} \mathrm{P}} \alpha \text {-trans }
$$

which is moreover a congruence, compatible with application and abstraction:

$$
\frac{\mathrm{M}={ }_{\alpha} \mathrm{M}^{\prime} \quad \mathrm{N}={ }_{\alpha} \mathrm{N}^{\prime}}{\mathrm{MN}={ }_{\alpha} \mathrm{M}^{\prime} \mathrm{N}^{\prime}} \alpha \text {-app } \frac{\mathrm{M}={ }_{\alpha} \mathrm{N}}{\lambda x \cdot \mathrm{M}={ }_{\alpha} \lambda x \cdot \mathrm{~N}} \alpha \text {-abs }
$$

In λ-calculus we don't distinguish between α-equivalent terms and write " $=$ " for $={ }_{\alpha}$.

Derivation Trees

We can combine inference rules into formal proofs called derivation trees:

$$
\frac{\frac{\overline{y \notin \operatorname{var}(x)}}{\lambda x \cdot x={ }_{\alpha} \lambda y \cdot y} \alpha \quad \frac{\overline{z \notin \operatorname{var}(y)}}{\lambda y \cdot y==_{\alpha} \lambda z \cdot z}}{\lambda} \alpha
$$

In order for such a tree to represent a completed proof, all of its leaves must be closed.

Substitution Desiderata

The most important operation in λ-calculus is the substitution of a term for a free variable in another term.

The notation " $\mathrm{M}[\mathrm{N} / x]$ " represents the substitution of N for x in M .
When performing substitution we don't want to disturb the binding structure of terms:

- we don't want to substitute for bound variables in M,

$$
\text { so } \quad(\lambda x \cdot x)[y / x] \neq \lambda x . y
$$

- we don't want to capture free variables in N ,

$$
\text { so } \quad(\lambda y \cdot x)[y / x] \neq \lambda y \cdot y
$$

Substitution Definition

The substitution operation $\mathrm{M}[\mathrm{N} / x]$ is defined by recursion on the term M :

$$
\begin{aligned}
x[\mathrm{~N} / x] & =\mathrm{N} & & \\
y[\mathrm{~N} / x] & =y & & \text { if } y \neq x \\
(\mathrm{MP})[\mathrm{N} / x] & =(\mathrm{M}[\mathrm{~N} / x])(\mathrm{P}[\mathrm{~N} / x]) & & \\
(\lambda x \cdot \mathrm{M})[\mathrm{N} / x] & =\lambda x \cdot \mathrm{M} & & \\
(\lambda y \cdot \mathrm{M})[\mathrm{N} / x] & =\lambda y \cdot(\mathrm{M}[\mathrm{~N} / x]) & & \text { if } x \neq y \text { and } y \notin \mathrm{fv}(\mathrm{~N}) \\
(\lambda y \cdot \mathrm{M})[\mathrm{N} / x] & =\lambda z \cdot(\mathrm{M}\{z / y\}[\mathrm{N} / x]) & & \text { if } x \neq y, y \in \mathrm{fv}(\mathrm{~N}) \text { and } z \text { fresh }
\end{aligned}
$$

Beta-Reduction of Terms

An application of an abstraction to a term is called a β-reducible expression, or " 3 -redex":
application
$\overbrace{(\underbrace{\lambda x \cdot \mathrm{M}}_{\text {abstraction }}) \mathrm{N}}$
The idea is that of applying a function to an argument.

The operation of β-reduction relates a β-redex to the term obtained by substituting the argument for the bound variable in the body of the function. (Just like calling a function in programming!)

Lambda-Calculus as a Programming Language

As a programming language, the λ-calculus computes by repeatedly contracting redexes to their reducts:

$$
\begin{aligned}
& (\lambda x \cdot y)(\underline{(\lambda z \cdot z z)(\lambda w \cdot w)}) \\
\rightarrow_{\beta} & (\lambda x \cdot y)(\underline{(\lambda w \cdot w)(\lambda w \cdot w))} \\
\rightarrow_{\beta} & \underline{(\lambda x \cdot y)(\lambda w \cdot w)} \\
\rightarrow_{\beta} & y
\end{aligned}
$$

A term containing no β-redexes is called a β-normal form.
If M reduces to a normal form N in zero or more β-steps then $\mathrm{M} \beta$-evaluates to N , written "M $\downarrow_{\beta} \mathrm{N}$ ".

Beta-Reduction Relation

Formally, β is a relation of λ-terms that relates redexes to their reducts:

$$
\beta: \Lambda \rightarrow \Lambda \quad \text { given by } \quad \beta((\lambda x . \mathrm{M}) \mathrm{N} \rightarrow \mathrm{M}[\mathrm{~N} / x])
$$

It is customary to write this as:

$$
\overline{(\lambda x . \mathrm{M}) \mathrm{N} \rightarrow_{\beta} \mathrm{M}[\mathrm{~N} / x]} \beta
$$

This relation is extended to make it compatible with application and abstraction:

$$
\frac{\mathrm{M} \rightarrow_{\beta} \mathrm{M}^{\prime}}{\mathrm{MN} \rightarrow_{\beta} \mathrm{M}^{\prime} \mathrm{N}} \beta-\mathrm{app}_{0} \frac{\mathrm{~N} \rightarrow_{\beta} \mathrm{N}^{\prime}}{\mathrm{MN} \rightarrow_{\beta} \mathrm{MN}^{\prime}} \beta-\mathrm{app}_{1} \frac{\mathrm{M} \rightarrow_{\beta} \mathrm{M}^{\prime}}{\lambda x \cdot \mathrm{M} \rightarrow_{\beta} \lambda x \cdot \mathrm{M}^{\prime}} \beta \text {-abs }
$$

The reflexive-transitive closure of β is the preorder relation β^{*} (" $\rightarrow_{\beta^{*}}$ " or " \rightarrow_{β} ").
The reflexive-symmetric-transitive closure is the equivalence relation $=_{\beta}$.

Evaluation Strategies

As a programming language, the λ-calculus is underspecified.
We could have done either

	$(\lambda x \cdot y)(\underline{(\lambda z \cdot z z)(\lambda w \cdot w)})$
\rightarrow_{β}	$(\lambda x \cdot y) \underline{(\lambda w \cdot w)(\lambda w \cdot w)})$
\rightarrow_{β}	$\underline{(\lambda x \cdot y)} \overline{(\lambda w \cdot w)}$
\rightarrow_{β}	y

$\underline{(\lambda x \cdot y)((\lambda z \cdot z z)(\lambda w \cdot w))}$
y

Try it yourself at https://lambdacalc.io/!
A choice of which redex(es) to reduce constitutes an evaluation strategy.
This brings up some questions:

- Do all strategies result in normal forms?
- Can different strategies give different normal forms?

Nontermination

Not all λ-terms have normal forms.

Consider the term

$$
\Omega:=(\lambda x . x x)(\lambda x . x x)
$$

This term has only one redex to reduce:

$$
\begin{aligned}
& \frac{(\lambda x \cdot x x)(\lambda x \cdot x x)}{(\lambda x \cdot x x)(\lambda x \cdot x x)} \\
\rightarrow_{\beta} & \underline{(\lambda}
\end{aligned}
$$

Undecidability of Normalizability

Reducing a λ-term to a normal form is like running a Turing machine until it halts to see what it outputs.

We have seen that the halting problem for Turing machines is undecidable.

The situation for reducing λ-terms is just as bad.

Theorem (Turing)

The problem of deciding whether a λ-term has a normal form is undecidable.

Confluence

Although in general we can't know whether a term has a normal form without trying to reduce it, the evaluation strategy we use to do so is not critical:

Theorem (Church \& Rosser, Shroer)

The relation $\beta^{*}: \Lambda \rightarrow \Lambda$ is confluent in the sense that for any term M,

$$
\forall \mathrm{N}_{0}, \mathrm{~N}_{1} . \text { if } \mathrm{M} \rightarrow_{\beta^{*}} \mathrm{~N}_{0} \text { and } \mathrm{M} \rightarrow_{\beta^{*}} \mathrm{~N}_{1} \text { then } \exists \mathrm{P} . \mathrm{N}_{0} \rightarrow_{\beta^{*}} \mathrm{P} \text { and } \mathrm{N}_{1} \rightarrow_{\beta^{*}} \mathrm{P} .
$$

Uniqueness of Normal Forms

Corollary

If a normal form exists for a term then that normal form is unique.

Proof.

Suppose $\mathrm{M} \downarrow_{\beta} \mathrm{N}_{0}$ and $\mathrm{M} \downarrow_{\beta} \mathrm{N}_{1}$. Then by confluence:

the term P must be N_{0} because N_{0} is normal; similarly, P must be N_{1} because N_{1} is normal. So $\mathrm{N}_{0}=\mathrm{N}_{1}$ by transitivity of equality.

Fixed Points

A fixed point of a function f is an argument x such that $f(x)=x$.
The function $f(x):=x^{2}$ has two fixed points, while $f(x):=x+1$ has none.
In λ-calculus every term has a fixed point.

Moreover, there is a single term that can compute a fixed point of any term.

Curry's Fixed Point Combinator

The Y-combinator is the term $\mathrm{Y}:=\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))$. Theorem
The Y-combinator computes a fixed point for any term M, in the sense that $\mathrm{M}(\mathrm{YM})={ }_{\beta} \mathrm{YM}$.
Proof.

$$
\begin{array}{ll}
& \mathrm{YM} \\
:= & \underline{(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) \mathrm{M}} \\
\rightarrow_{\beta} & \underline{(\lambda x \cdot \mathrm{M}(x x))(\lambda x \cdot \mathrm{M}(x x))} \\
\rightarrow_{\beta} & \mathrm{M}(\underline{(\lambda x \cdot \mathrm{M}(x x))(\lambda x \cdot \mathrm{M}(x x)))} \\
\leftarrow_{\beta} & \mathrm{M}(\underline{(\lambda f \cdot(\lambda x \cdot f(x x))(\lambda x \cdot f(x x))) \mathrm{M})} \\
=: & \mathrm{M}(\mathrm{YM})
\end{array}
$$

Programming in λ-Calculus

We claimed that λ-calculus is a programming language.
So far we have just pure functions. Where are the

- booleans?
- numbers?
- tuples?
- lists?
- recursive functions?
- etc.

Amazingly, we can conjure them all out of pure functions.

Booleans

The following λ-terms are known as Church booleans:

$$
\begin{aligned}
& \top:=\lambda x y \cdot x \\
& \perp:=\lambda x y \cdot y \\
& \neg:=\lambda b \cdot b \perp \top \\
& \wedge:=\lambda x y \cdot x y \perp \\
& \vee:=\lambda x y \cdot x \top y \\
& \text { if }:=\lambda b x y \cdot b x y
\end{aligned}
$$

Experiment with evaluating boolean expressions at https://lambdacalc.io/.

Natural Numbers

The following λ-terms are known as Church numerals:

$$
\begin{aligned}
0 & :=\lambda f x \cdot x \\
\mathrm{~S} & :=\lambda n f x \cdot f(n f x) \\
+ & :=\lambda m n \cdot m \mathrm{~S} n \\
\times & :=\lambda m n f \cdot m(n f)
\end{aligned}
$$

Indeed, we can encode all the standard arithmetic functions in λ-calculus.
A tricky one is the predecessor $n-1$, which stumped people for a long time.
Church's student Kleene cracked it while having his wisdom teeth extracted.
The trick is to encode ordered pairs $(m, m+1)$, increment them using S , and take the first projection when the second projection is n.

Recursive Functions

We can use fixed points to write recursive functions. Consider the factorial:
fact $n=$ if (is0 $n) 1(\times n($ fact (pred $n)))$
fact $=\lambda n$.if (is0 $n) 1(\times n($ fact (pred $n)))$
fact $=(\lambda f n$.if (is0 $n) 1(\times n(f($ pred $n)))$ fact

Now fact is defined to be some function applied to fact. Call that function " F ":
$\mathrm{F}:=\lambda \mathrm{f} \mathrm{n}$. if (is0 n) $1(\times \mathrm{n}(\mathrm{f}(\mathrm{pred} \mathrm{n}))$)
Then fact $=F$ fact. So fact is a fixed point of F.
fact $=Y \mathrm{~F}$
We can use this to evaluate fact 2.
"Let us calculate" - Leibniz

Recursive Functions in Python

This works in Python too, we just need to add one more layer of functions to interrupt Python's eager evaluation:

```
Y = lambda f :
    (lambda x : f (lambda y : x (x) (y)))
    (lambda x : f (lambda y : x (x) (y)))
```

Then we can write the non-recursive function of which factorial is a fixed point:

And define the recursive factorial function as its fixed point:
fact $=$ Y (F)
to compute larger factorials quickly.

Lambda-Computable Functions

Theorem (Turing)

Every function $\mathbb{N} \rightarrow \mathbb{N}$ that is computable by Turing machine is computable in the λ-calculus.

