Finite Automata

CSCI 2210

2023-09-11 and 2023-09-13

A **state machine** has a number of possible internal states that it can be in and a number of stimuli that it can receive.

When it receives a stimulus the machine may produce some response and may change to a different state.

Example: Vending Machine

Consider a vending machine with the following attributes:

- sells only one kind of product (a can of soda),
- accepts only one kind of coin (a quarter),
- a soda costs two coins (50¢),
- has 3 stimuli: insert coin (c), request product (p), and request refund (r),
- has 2 responses: *release product* (P), and *release coin* (C).

subject to the following constraints:

- fulfills requests whenever possible,
- is "fair" (no cheating either way),
- balance can't exceed price of product.

State Transition Graph

We can represent the behavior of the machine with a state transition graph:

Determinism

Our state transition graph is **deterministic**, in the sense that for each state and each possible stimulus there is exactly one sequence of responses and state transition.

This corresponds to a **function**:

Determining Language Membership

Let Σ be a nonempty finite set, which will think of as an **alphabet** of symbols.

 Σ^* is the set of finite sequences of elements of Σ , which we think of as **words**.

A **language** over the alphabet Σ is a predicate on (or subset of) Σ^* .

One kind of computational task is, given a language $L \subseteq \Sigma^*$ and a word $w \in \Sigma^*$, determine whether or not $w \in L$.

Our first model of computation answers this question for a certain class of languages.

Deterministic Finite Automata

A deterministic finite automaton ("DFA"; synonym: "deterministic finite state machine") M has the following components:

input alphabet: a nonempty finite set of symbols Σ ,

state set: a nonempty finite set of states Q,

```
start state: a chosen state q_0 \in Q,
```

accept state set: a chosen subset of states $F \subseteq Q$,

state transition function: a function $\delta: Q \times \Sigma \rightarrow Q$.

DFA State Transition Graph

We can represent a DFA ${\rm M}$ using a state transition graph.

The vertex set is Q.

For each ordered pair $(q\,,s)\in \mathbf{Q}\times\Sigma$ there is an edge $e:q\to\delta(q\,,s)$ labeled by s.

In a diagram for this graph we annotate the vertex q_0 and those of F.

Example: DFA State Transition Graph Diagram Let M_{par} be the DFA specified by:

This means:

•	$\Sigma = \{0, 1\},\$	• δ =		0	1
•			$q_{\mathrm{even}} \ q_{\mathrm{odd}}$	$q_{\mathrm{even}} \ q_{\mathrm{odd}}$	$q_{odd} \ q_{even}$

Language of a DFA: Operational Semantics

Each DFA M over alphabet Σ determines a language L(M) according to the following operational semantics.

Given an input string $w=[w_0,w_1,\cdots\!,w_n]\in\Sigma^*$:

- M begins in the start state q_0 ,
- M inspects the symbols of w left-to-right one at a time,
- If M is in state q inspecting symbol w_i then M transitions to state $\delta(q, w_i)$,
- Upon exhausting w, M is in some state q_f ,
- We say $w \in L(M)$ just in case $q_f \in F$.

Language of a DFA: State Transition Graph Interpretation

For a DFA M, each word $w \in \Sigma^*$ determines a path $p: q_0 \to q_f$ in the state transition graph G(M).

The state transition function δ determines where this path goes at each step.

Since distinct edges share the same labels we write paths in state transition graphs with explicit vertices:

$$[(\mathbf{V}_0), e_0, (\mathbf{V}_1), e_1, (\mathbf{V}_2), e_2, (\mathbf{V}_3)]$$

$$\underbrace{\mathbf{V}_0}_{e_0} \xrightarrow{e_0} \underbrace{\mathbf{V}_1}_{e_1} \xrightarrow{e_1} \underbrace{\mathbf{V}_2}_{e_2} \xrightarrow{e_2} \underbrace{\mathbf{V}_3}$$

Example: Language of M_{par}

determines the language of even parity: $w \in L(M_{par})$ just in case w contains an even number of 1s.

for example:

- word 1001 determines path $[(q_{\text{even}}), 1, (q_{\text{odd}}), 0, (q_{\text{odd}}), 0, (q_{\text{odd}}), 1, (q_{\text{even}})]$
- word 010 determines path $[(q_{\rm even}), 0, (q_{\rm even}), 1, (q_{\rm odd}), 0, (q_{\rm odd})]$

Activity: Language of a DFA

Verify that the following state transition graph represents a DFA over alphabet $\Sigma := \{0, 1\}$ and give a description of its language.

Activity: DFA for a Language

Give a DFA for the language over alphabet $\Sigma := \{0, 1\}$ of words that begin with a 0.

A language is called **regular** if there is some DFA that decides it.

To show that a language is regular, it suffices to produce the corresponding DFA.

An **empty language** contains no words ($L_{\emptyset} = \{ \}$).

The empty language over the alphabet $\Sigma := \{0, 1\}$ is regular.

A singleton language contains exactly one word ($L_w = \{w\}$).

Any singleton language over the alphabet $\Sigma := \{0, 1\}$ is regular.

Idea: construct a DFA with a "happy path" labeled by w from the start state to the only accept state, and add a captive "failure state" for falling off the happy path.

Given a language L over an alphabet Σ , its **complement language** L contains exactly the words of Σ that are not contained in L:

$$\mathbf{\bar{L}} \coloneqq \boldsymbol{\Sigma}^* - \mathbf{L}.$$

The complement of a regular language over the alphabet $\Sigma := \{0, 1\}$ is regular.

Idea: swap the roles of the accepting and non-accepting states:

$$\mathbf{F}_{\bar{\mathbf{L}}} \coloneqq \mathbf{Q} - \mathbf{F}_{\mathbf{L}}$$

Given languages L_0 and L_1 over an alphabet Σ , the **union language** $L_0 \cup L_1$ contains exactly the words of Σ^* that are contained in at least one of L_0 and L_1 :

$$\overbrace{L_0 \cup L_1}^{\text{as languages}} := \underbrace{L_0 \cup L_1}_{\text{as subsets of } \Sigma^*}.$$

It seems like the union of regular languages should be regular.

Intuition: if DFA M_0 decides language L_0 and DFA M_1 decides language L_1 , just run them both on string w and accept if either M_0 or M_1 accepts w.

Problem: two DFAs plus some control logic are not a DFA! We need another plan.

DFA for Union Language

Let DFA M_i be described by $(\Sigma, Q_i, q_{0_i}, F_i, \delta_i)$ for $i \in \{0, 1\}$. We can make a DFA M for $L_0 \cup L_1$ with: input alphabet: Σ state set: $Q_0 \times Q_1$

 $\begin{array}{l} \text{start state: } (q_{0_0}\,,q_{0_1}) \\ \text{accept state set: } \underbrace{(F_0\times Q_1)}_{\text{accepted by }M_0}\cup\underbrace{(Q_0\times F_1)}_{\text{accepted by }M_1} \end{array}$

state transition function: $\delta: Q_0 \times Q_1 \times \Sigma \to Q_0 \times Q_1$ given by:

 $(q_x\,,q_y\,,s)\mapsto (\delta_0(q_x\,,s)\,,\delta_1(q_y\,,s))$