Finite Automata

CSCI 2210

2023-09-11 and 2023-09-13

State Machines

A state machine has a number of possible internal states that it can be in and a number of stimuli that it can receive.

When it receives a stimulus the machine may produce some response and may change to a different state.

Example: Vending Machine

Consider a vending machine with the following attributes:

- sells only one kind of product (a can of soda),
- accepts only one kind of coin (a quarter),
- a soda costs two coins (50¢),
- has 3 stimuli: insert coin (c), request product (p), and request refund (r),
- has 2 responses: release product (P), and release coin (C).
subject to the following constraints:
- fulfills requests whenever possible,
- is "fair" (no cheating either way),
- balance can't exceed price of product.

State Transition Graph

We can represent the behavior of the machine with a state transition graph:

Determinism

Our state transition graph is deterministic, in the sense that for each state and each possible stimulus there is exactly one sequence of responses and state transition.

This corresponds to a function:
$\delta:$ state \times stimulus \rightarrow responses \times state.

	c	p	r
0	$([], 1)$	$([], 0)$	$([], 0)$
1	$([], 2)$	$([], 1)$	$([\mathrm{C}], 0)$
2	$([\mathrm{C}], 2)$	$([\mathrm{P}], 0)$	$([\mathrm{C}, \mathrm{C}], 0)$

Determining Language Membership

Let Σ be a nonempty finite set, which will think of as an alphabet of symbols.
Σ^{*} is the set of finite sequences of elements of Σ, which we think of as words.

A language over the alphabet Σ is a predicate on (or subset of) Σ^{*}.

One kind of computational task is, given a language $\mathrm{L} \subseteq \Sigma^{*}$ and a word $w \in \Sigma^{*}$, determine whether or not $w \in \mathrm{~L}$.

Our first model of computation answers this question for a certain class of languages.

Deterministic Finite Automata

A deterministic finite automaton ("DFA"; synonym: "deterministic finite state machine") M has the following components:
input alphabet: a nonempty finite set of symbols Σ,
state set: a nonempty finite set of states Q,
start state: a chosen state $q_{0} \in \mathrm{Q}$,
accept state set: a chosen subset of states $\mathrm{F} \subseteq \mathrm{Q}$,
state transition function: a function $\delta: \mathrm{Q} \times \Sigma \rightarrow \mathrm{Q}$.

DFA State Transition Graph

We can represent a DFA M using a state transition graph.

The vertex set is Q .
For each ordered pair $(q, s) \in \mathrm{Q} \times \Sigma$ there is an edge $e: q \rightarrow \delta(q, s)$ labeled by s.

In a diagram for this graph we annotate the vertex q_{0} and those of F .

Example: DFA State Transition Graph Diagram

Let $\mathrm{M}_{\text {par }}$ be the DFA specified by:

This means:

- $\Sigma=\{0,1\}$,
- $\mathrm{Q}=\left\{q_{\text {even }}, q_{\text {odd }}\right\}$,
- $q_{0}=q_{\text {even }}$,
- $\mathrm{F}=\left\{q_{\text {even }}\right\}$,
- $\delta=$

	0	1
$q_{\text {even }}$	$q_{\text {even }}$	$q_{\text {odd }}$
$q_{\text {odd }}$	$q_{\text {odd }}$	$q_{\text {even }}$

Language of a DFA: Operational Semantics

Each DFA M over alphabet Σ determines a language L(M) according to the following operational semantics.

Given an input string $w=\left[w_{0}, w_{1}, \cdots, w_{n}\right] \in \Sigma^{*}$:

- M begins in the start state q_{0},
- M inspects the symbols of w left-to-right one at a time,
- If M is in state q inspecting symbol w_{i} then M transitions to state $\delta\left(q, w_{i}\right)$,
- Upon exhausting w, M is in some state q_{f},
- We say $w \in \mathrm{~L}(\mathrm{M})$ just in case $q_{f} \in \mathrm{~F}$.

Language of a DFA: State Transition Graph Interpretation

For a DFA M, each word $w \in \Sigma^{*}$ determines a path $p: q_{0} \rightarrow q_{f}$ in the state transition graph $\mathrm{G}(\mathrm{M})$.

The state transition function δ determines where this path goes at each step.
Since distinct edges share the same labels we write paths in state transition graphs with explicit vertices:

$$
\left[\left(\mathrm{V}_{0}\right), e_{0},\left(\mathrm{~V}_{1}\right), e_{1},\left(\mathrm{~V}_{2}\right), e_{2},\left(\mathrm{~V}_{3}\right)\right]
$$

Example: Language of $\mathrm{M}_{p a r}$

determines the language of even parity: $w \in \mathrm{~L}\left(\mathrm{M}_{\text {par }}\right)$ just in case w contains an even number of 1 s .
for example:

- word 1001 determines path $\left[\left(q_{\text {even }}\right), 1,\left(q_{\text {odd }}\right), 0,\left(q_{\text {odd }}\right), 0,\left(q_{\text {odd }}\right), 1,\left(q_{\text {even }}\right)\right]$
- word 010 determines path $\left[\left(q_{\text {even }}\right), 0,\left(q_{\text {even }}\right), 1,\left(q_{\text {odd }}\right), 0,\left(q_{\text {odd }}\right)\right]$

Activity: Language of a DFA

Verify that the following state transition graph represents a DFA over alphabet $\Sigma:=\{0,1\}$ and give a description of its language.

Activity: DFA for a Language

Give a DFA for the language over alphabet $\Sigma:=\{0,1\}$ of words that begin with a 0 .

Regular Languages

A language is called regular if there is some DFA that decides it.

To show that a language is regular, it suffices to produce the corresponding DFA.

Regular Language Constructions

An empty language contains no words $\left(\mathrm{L}_{\emptyset}=\{ \}\right)$.

The empty language over the alphabet $\Sigma:=\{0,1\}$ is regular.

i.e.

Regular Language Constructions

A singleton language contains exactly one word ($\mathrm{L}_{w}=\{w\}$).
Any singleton language over the alphabet $\Sigma:=\{0,1\}$ is regular.

Idea: construct a DFA with a "happy path" labeled by w from the start state to the only accept state, and add a captive "failure state" for falling off the happy path.

Regular Language Constructions

Given a language L over an alphabet Σ, its complement language $\overline{\mathrm{L}}$ contains exactly the words of Σ that are not contained in L:

$$
\overline{\mathrm{L}}:=\Sigma^{*}-\mathrm{L} .
$$

The complement of a regular language over the alphabet $\Sigma:=\{0,1\}$ is regular.

Idea: swap the roles of the accepting and non-accepting states:

$$
\mathrm{F}_{\overline{\mathrm{L}}}:=\mathrm{Q}-\mathrm{F}_{\mathrm{L}}
$$

Regular Language Constructions

Given languages L_{0} and L_{1} over an alphabet Σ, the union language $L_{0} \cup L_{1}$ contains exactly the words of Σ^{*} that are contained in at least one of L_{0} and L_{1} :

$$
\overbrace{\mathrm{L}_{0} \cup \mathrm{~L}_{1}}^{\text {as languages }}:=\underbrace{\mathrm{L}_{0} \cup \mathrm{~L}_{1}}_{\text {as subsets of } \Sigma^{*}} .
$$

It seems like the union of regular languages should be regular.

Intuition: if DFA M_{0} decides language L_{0} and DFA M_{1} decides language L_{1}, just run them both on string w and accept if either M_{0} or M_{1} accepts w.

Problem: two DFAs plus some control logic are not a DFA! We need another plan.

DFA for Union Language

Let DFA M_{i} be described by $\left(\Sigma, \mathrm{Q}_{i}, q_{0_{i}}, \mathrm{~F}_{i}, \delta_{i}\right)$ for $i \in\{0,1\}$.
We can make a DFA M for $\mathrm{L}_{0} \cup \mathrm{~L}_{1}$ with:
input alphabet: Σ
state set: $\mathrm{Q}_{0} \times \mathrm{Q}_{1}$
start state: $\left(q_{0_{0}}, q_{0_{1}}\right)$
accept state set: $\underbrace{\left(F_{0} \times Q_{1}\right)}_{\text {accepted by } M_{0}} \cup \underbrace{\left(Q_{0} \times F_{1}\right)}_{\text {accepted by } M_{1}}$
state transition function: $\delta: \mathrm{Q}_{0} \times \mathrm{Q}_{1} \times \Sigma \rightarrow \mathrm{Q}_{0} \times \mathrm{Q}_{1}$ given by:

$$
\left(q_{x}, q_{y}, s\right) \mapsto\left(\delta_{0}\left(q_{x}, s\right), \delta_{1}\left(q_{y}, s\right)\right)
$$

