The Curry-Howard Isomorphism
CSCI 2210

2023-11-27

Logic in Pure Lambda Calculus

We can encode logic and arithmetic in pure X-calculus using Church encodings.

However, this is not very pleasant to work with.

Pure X-calculus is equivalent in computational power to Turing machines.

However, this means that the normalization problem is not decidable.

The X-calculus was intended as a tool to study mathematical logic.

But nonterminating 3-reductions make it unsuitable for this purpose.

Strength Through Weakness

To use X-calculus for mathematical logic people sought to restrict the set of
admissible terms to those that can be interpreted into sets and functions.

This excludes terms like:
® \x .xx, because no mathematical function is an element of its own domain,

® (Z\z.zx)(\x.zx), which has no normal form.

One way to do this is to begin with a set of primitive terms and inductively add
terms of certain forms that we know preserve desired properties.

This is the idea behind simply-typed X\-calculus (STLC).

Types of STLC

We start with an arbitrary finite set of base types .
A type of the simply-typed X\-calculus is given by the following inductive definition:
base type: If A € v then A is a type.
product types: If A and B are types then A x B is a type.
function types: If A and B are types then A — B is a type.
unit type: Unconditionally, 1 is a type.
By convention:
e X binds more tightly than — , so “A x B — C”"means (A x B) — C,
e — associates to the right, so “A — B — C"means A — (B — C).

The set of types is called “T'y”.

Terms of STLC

We start with a countably infinite set of variables V.
A term of the simply-typed X\-calculus is given by the following inductive definition:

variable: If z € V then x is a term.

application: If M and N are terms then M N is a term.

abstraction: If x is a variable, A is a type, and M is a term then \z:A . M is a term.
pairing: If M and N are terms then (M , N) is a term.

projection: If M is a term then =y M and w; M are terms.

it: Unconditionally, x is a term.

The set of terms is called “T'm”.

Type Assignment
In STLC we admit only those terms that are well-typed.
These are terms to which we can give a type assignment.
The notation “M : A” means “term M has the type A”.

The type of a term depends on the types of its subterms, and ultimately on the
types of its variables.

A typing context is a partial function from variablestotypes T': V — Ty
giving type assignments for variables.

A context is typically written as a sequence, “z,: Ay, x; : Ay, 2, A%

Typing Judgements
A typing judgement is a type assignment for a term in a context that includes all of
its free variables.

It is typically written using sequent notation:
typing context
TFM:A
N e’
type assignment
For example, the typing judgement

x:AkFz: A

means, “in a context where the variable x has type A, the term consisting the
variable = has type A”.

Typing Rules

The typing judgements of simply-typed X\-calculus are inductively generated by:

Variables:
var
Fz:Atz: A
Function Types:
Iiz:AFM:B 'FM:A—-B TEN:A
-+ — —
F'Fxz:A.M: A — B I'FMN:B
Product Types:
'-M:A Fl—NB><+ '-M:AxB w— '-M:AxB —
TH(M,N):AxB TFmoM:A Trm M:B
Unit Type:
1+

I'F%x:1

Typing Derivations

A typing derivation is a free built from the typing rules where all leaves are rules
without premisses:

z:A—=Ay:ArFz: A=A ver z:A—=Ay:AkFy: A ver
T AoAyArzAsA 2 AoAy:AFzy: A oo
rz:A—>Ay:Aba(zy): A
A= AFXNYy:A.z(zy): A=A

—
FXxXz: A=A Xy:A.z(zy):(A—-A) A A

— —

-+

The typing rules have the property that there is a unique rule for each term-forming
operation in the conclusion so constitute a type-checking algorithm to determine
whether a term has a specified type.

Type Inhabitation
The type inhabitation problem asks whether a type contains any closed terms.

For example, we can find aterm of type A x B — B x A:

var var
r:AxBEz:AxB r:AxBEz:AxB
r:AxBkFmz:B ! r:AXxBEmyx: A +0
X
r: AXBF (myz,myz): Bx A
— +

FXz:AXB.(mjz,tyz): AXxB—=BxA
It’s worth thinking about how we could find such a term.

In contrast, it’s not possible to find a term of type 1 — A.

Propositions as Types

Theorem
If we interpret base types as atomic propositions
and the type formers as logical connectives as follows:
® lastruthT,
® X as conjunction A,
e — as implication D,
then a type is inhabited exactly when the corresponding logical proposition is a
tautology.

So:
® The proposition A AB D B A A is a tautology,

e The proposition T D A is not a tautology: it is false whenever A is false.

Terms as Proofs

Theorem
Moreover, we can interpret each term of a given type as a proof of the
corresponding proposition.

This determines a constructive logic known as intuitionistic logic.
In intuitionistic logic, proofs are themselves computational objects.
For example, the \-calculus term Xz : A X B.(mz,my2) : AXxB - B x A

corresponds to an intuitionistic proof of the proposition A AB D B A A,

which is an algorithm for turning a proof of A A B into a proof of B A A.

Statics and Dynamics
Last time we looked at the statics of STLC:

® what are the types?
e what are the terms?

¢ what type, if any, does a given term have?

Previously, we studied the dynamics of pure \-calculus:
e which terms can a given term 3-reduce to?
® does a term normalize?
e if so, what is its normal form?

e do two terms have the same normal form?

Now we turn to the dynamics of STLC.

Typed B-Reduction

Now we have more kinds of 3-reducible expressions (redexes).

For function types we have redexes like in pure \-calculus:

application
—
Az:A.M)N —5 M[N/z]
S — e’
abstraction substitution

For product types we have redexes for projecting from a pair:

projection projection
e e e
T (M,N) —g M and ™ (M,N) —g N
N—— e’
pairing pairing

These follow a pattern: if we introduce a term of function/product type
and then eliminate it, the result is something simpler.
There is no B-rule for terms of unit type. (Why not?)

As in pure \-calculus, we can apply 3-reductions within subterms.

Subject Reduction

The relation 3 is type preserving in the following sense:

Theorem
For any term well-typedterm I' - M : A,
if M —5 NthenI' =N : A

This means that if a program computes a result,
then the result will have the same type as the program that computed it.

Confluence
Adding types does not interfere with the confluence of 3-reduction.

Theorem
The relation 3* is confluent in the sense that for any well-typed term I' = M : A,

vV Ng, Ny . if M —4. Ngand M —4. Ny then 3P . Ny —4. Pand Ny —g. P.

B* M *
/N
NO\ /Nl

N .
N 7
N .

B* N B*

Desiderata of STLC

Recall that the reason for imposing types on X-calculus was to restrict the
admissible terms to those that are semantically meaningful.

The B-rules for product and function types ensure that they behave like
mathematical products and functions.

We also want to exclude terms that don’t have normal forms, like
Q:=N\x.zz)\z.xx).

In this regard STLC is as good as it could possibly be.

Normalization

STLC is normalizing:
Theorem (normalization)

For every well-typedterm T' M : A
thereisanormalterm I' - N: A suchthat M iB N.

Moreover, every reduction strategy succeeds in normalizing any term:

Theorem (termination)
Every sequence of 3-reductions in STLC is finite.

Type Safety

Together, confluence, subject reduction and termination guarantee that
any interpreter for STLC will evaluate any well-typed program to a unique value
without the possibility of crashing or hanging.

Beyond STLC

There are typed \-calculi richer than STLC that also have these type safety
properties.

Under the Curry-Howard isomorphism we can add type formers corresponding to
full first-order logic:
disjunction Vv,

falsity 1,
universal quantification V,

existential quantification 4.

There are several programming languages and mathematical proof assistants that
are designed in this way.

