The Curry-Howard Isomorphism

CSCI 2210

2023-11-27

Logic in Pure Lambda Calculus

We can encode logic and arithmetic in pure λ-calculus using Church encodings. However, this is not very pleasant to work with.

Pure λ-calculus is equivalent in computational power to Turing machines. However, this means that the normalization problem is not decidable.

The λ-calculus was intended as a tool to study mathematical logic.
But nonterminating β-reductions make it unsuitable for this purpose.

Strength Through Weakness

To use λ-calculus for mathematical logic people sought to restrict the set of admissible terms to those that can be interpreted into sets and functions.

This excludes terms like:

- $\lambda x . x x$, because no mathematical function is an element of its own domain,
- $(\lambda x . x x)(\lambda x . x x)$, which has no normal form.

One way to do this is to begin with a set of primitive terms and inductively add terms of certain forms that we know preserve desired properties.

This is the idea behind simply-typed λ-calculus (STLC).

Types of STLC

We start with an arbitrary finite set of base types l .
A type of the simply-typed λ-calculus is given by the following inductive definition:
base type: If $\mathrm{A} \in \iota$ then A is a type.
product types: If A and B are types then $\mathrm{A} \times \mathrm{B}$ is a type.
function types: If A and B are types then $\mathrm{A} \rightarrow \mathrm{B}$ is a type.
unit type: Unconditionally, 1 is a type.
By convention:

- \times binds more tightly than \rightarrow, so " $\mathrm{A} \times \mathrm{B} \rightarrow \mathrm{C}$ " means $(\mathrm{A} \times \mathrm{B}) \rightarrow \mathrm{C}$,
- \rightarrow associates to the right, so " $A \rightarrow B \rightarrow C$ " means $A \rightarrow(B \rightarrow C)$.

The set of types is called "Ty".

Terms of STLC

We start with a countably infinite set of variables V .
A term of the simply-typed λ-calculus is given by the following inductive definition:
variable: If $x \in \mathrm{~V}$ then x is a term.
application: If M and N are terms then M N is a term.
abstraction: If x is a variable, A is a type, and M is a term then $\lambda x: \mathrm{A} . \mathrm{M}$ is a term.
pairing: If M and N are terms then $\langle\mathrm{M}, \mathrm{N}\rangle$ is a term.
projection: If M is a term then $\pi_{0} \mathrm{M}$ and $\pi_{1} \mathrm{M}$ are terms.
it: Unconditionally, \star is a term.
The set of terms is called "Tm".

Type Assignment

In STLC we admit only those terms that are well-typed.
These are terms to which we can give a type assignment.
The notation " M : A" means "term M has the type A".
The type of a term depends on the types of its subterms, and ultimately on the types of its variables.

A typing context is a partial function from variables to types $\quad \Gamma: V \rightharpoonup \mathrm{Ty}$ giving type assignments for variables.

A context is typically written as a sequence, " $x_{0}: \mathrm{A}_{0}, x_{1}: \mathrm{A}_{1}, \cdots, x_{n}: \mathrm{A}_{n}$ ".

Typing Judgements

A typing judgement is a type assignment for a term in a context that includes all of its free variables.

It is typically written using sequent notation:

For example, the typing judgement

$$
\Gamma, x: \mathrm{A} \vdash x: \mathrm{A}
$$

means, "in a context where the variable x has type A, the term consisting the variable x has type A".

Typing Rules

The typing judgements of simply-typed λ-calculus are inductively generated by: Variables:

$$
\overline{\Gamma, x: \mathrm{A} \vdash x: \mathrm{A}} \operatorname{var}
$$

Function Types:

$$
\frac{\Gamma, x: \mathrm{A} \vdash \mathrm{M}: \mathrm{B}}{\Gamma \vdash \lambda x: \mathrm{A} \cdot \mathrm{M}: \mathrm{A} \rightarrow \mathrm{~B}} \rightarrow+\frac{\Gamma \vdash \mathrm{M}: \mathrm{A} \rightarrow \mathrm{~B} \quad \Gamma \vdash \mathrm{~N}: \mathrm{A}}{\Gamma \vdash \mathrm{MN}: \mathrm{B}} \rightarrow-
$$

Product Types:

$$
\frac{\Gamma \vdash \mathrm{M}: \mathrm{A} \quad \Gamma \vdash \mathrm{~N}: \mathrm{B}}{\Gamma \vdash\langle\mathrm{M}, \mathrm{~N}\rangle: \mathrm{A} \times \mathrm{B}} \times+\quad \frac{\Gamma \vdash \mathrm{M}: \mathrm{A} \times \mathrm{B}}{\Gamma \vdash \pi_{0} \mathrm{M}: \mathrm{A}} \times-_{0} \quad \frac{\Gamma \vdash \mathrm{M}: \mathrm{A} \times \mathrm{B}}{\Gamma \vdash \pi_{1} \mathrm{M}: \mathrm{B}} \times-_{1}
$$

Unit Type:

$$
\overline{\Gamma \vdash \star: 1}^{1+}
$$

Typing Derivations

A typing derivation is a tree built from the typing rules where all leaves are rules without premisses:

$$
\begin{aligned}
& \overline{x: \mathrm{A} \rightarrow \mathrm{~A}, y: \mathrm{A} \vdash x: \mathrm{A} \rightarrow \mathrm{~A}} \quad \mathrm{var} \\
& \begin{array}{cc}
\overline{x: \mathrm{A} \rightarrow \mathrm{~A}, y: \mathrm{A} \vdash x: \mathrm{A} \rightarrow \mathrm{~A}} \quad \operatorname{var} \overline{x: \mathrm{A} \rightarrow \mathrm{~A}, y: \mathrm{A} \vdash y: \mathrm{A}} & \operatorname{var} \\
x: \mathrm{A} \rightarrow \mathrm{~A}, y: \mathrm{A} \vdash x y: \mathrm{A} & \rightarrow-
\end{array} \\
& x: \mathrm{A} \rightarrow \mathrm{~A}, y: \mathrm{A} \vdash x(x y): \mathrm{A} \\
& \frac{x: \mathrm{A} \rightarrow \mathrm{~A} \vdash \lambda y: \mathrm{A} \cdot x(x y): \mathrm{A} \rightarrow \mathrm{~A}}{f} \frac{\rightarrow+}{\vdash \lambda x: \mathrm{A} \rightarrow \mathrm{~A} \cdot \lambda y: \mathrm{A} \cdot x(x y):(\mathrm{A} \rightarrow \mathrm{~A}) \rightarrow \mathrm{A} \rightarrow \mathrm{~A}} \rightarrow+
\end{aligned}
$$

The typing rules have the property that there is a unique rule for each term-forming operation in the conclusion so constitute a type-checking algorithm to determine whether a term has a specified type.

Type Inhabitation

The type inhabitation problem asks whether a type contains any closed terms.
For example, we can find a term of type $\mathrm{A} \times \mathrm{B} \rightarrow \mathrm{B} \times \mathrm{A}$:

$$
\frac{\frac{x: \mathrm{A} \times \mathrm{B} \vdash x: \mathrm{A} \times \mathrm{B}}{x: \mathrm{A} \times \mathrm{B} \vdash \pi_{1} x: \mathrm{B}}{ }^{\operatorname{var}} \times-_{1} \quad \frac{\overline{x: \mathrm{A} \times \mathrm{B} \vdash x: \mathrm{A} \times \mathrm{B}}}{x: \mathrm{A} \times \mathrm{B} \vdash \pi_{0} x: \mathrm{A}}}{\stackrel{\operatorname{var}}{\times{ }_{0}} \times+}
$$

It's worth thinking about how we could find such a term.
In contrast, it's not possible to find a term of type $1 \rightarrow \mathrm{~A}$.

Propositions as Types

Theorem

If we interpret base types as atomic propositions and the type formers as logical connectives as follows:

- 1 as truth \top,
- \times as conjunction \wedge,
- \rightarrow as implication \supset,
then a type is inhabited exactly when the corresponding logical proposition is a tautology.

So:

- The proposition $\mathrm{A} \wedge \mathrm{B} \supset \mathrm{B} \wedge \mathrm{A}$ is a tautology,
- The proposition $T \supset \mathrm{~A}$ is not a tautology: it is false whenever A is false.

Terms as Proofs

Theorem

Moreover, we can interpret each term of a given type as a proof of the corresponding proposition.

This determines a constructive logic known as intuitionistic logic.
In intuitionistic logic, proofs are themselves computational objects.

For example, the λ-calculus term $\lambda x: \mathrm{A} \times \mathrm{B} \cdot\left\langle\pi_{1} x, \pi_{0} x\right\rangle: \mathrm{A} \times \mathrm{B} \rightarrow \mathrm{B} \times \mathrm{A}$ corresponds to an intuitionistic proof of the proposition $\mathrm{A} \wedge \mathrm{B} \supset \mathrm{B} \wedge \mathrm{A}$, which is an algorithm for turning a proof of $\mathrm{A} \wedge \mathrm{B}$ into a proof of $\mathrm{B} \wedge \mathrm{A}$.

Statics and Dynamics

Last time we looked at the statics of STLC:

- what are the types?
- what are the terms?
- what type, if any, does a given term have?

Previously, we studied the dynamics of pure λ-calculus:

- which terms can a given term β-reduce to?
- does a term normalize?
- if so, what is its normal form?
- do two terms have the same normal form?

Now we turn to the dynamics of STLC.

Typed β-Reduction

Now we have more kinds of β-reducible expressions (redexes).
For function types we have redexes like in pure λ-calculus:

For product types we have redexes for projecting from a pair:

These follow a pattern: if we introduce a term of function/product type and then eliminate it, the result is something simpler.
There is no β-rule for terms of unit type. (Why not?)
As in pure λ-calculus, we can apply β-reductions within subterms.

Subject Reduction

The relation β is type preserving in the following sense:

Theorem

For any term well-typed term $\Gamma \vdash \mathrm{M}: \mathrm{A}$, if $\mathrm{M} \rightarrow_{\beta} \mathrm{N}$ then $\Gamma \vdash \mathrm{N}: \mathrm{A}$

This means that if a program computes a result, then the result will have the same type as the program that computed it.

Confluence

Adding types does not interfere with the confluence of β-reduction.

Theorem

The relation β^{*} is confluent in the sense that for any well-typed term $\Gamma \vdash \mathrm{M}: \mathrm{A}$,

$$
\forall \mathrm{N}_{0}, \mathrm{~N}_{1} . \text { if } \mathrm{M} \rightarrow_{\beta^{*}} \mathrm{~N}_{0} \text { and } \mathrm{M} \rightarrow_{\beta^{*}} \mathrm{~N}_{1} \text { then } \exists \mathrm{P} . \mathrm{N}_{0} \rightarrow_{\beta^{*}} \mathrm{P} \text { and } \mathrm{N}_{1} \rightarrow_{\beta^{*}} \mathrm{P} .
$$

Desiderata of STLC

Recall that the reason for imposing types on λ-calculus was to restrict the admissible terms to those that are semantically meaningful.

The β-rules for product and function types ensure that they behave like mathematical products and functions.

We also want to exclude terms that don't have normal forms, like $\Omega:=(\lambda x . x x)(\lambda x . x x)$.

In this regard STLC is as good as it could possibly be.

Normalization

STLC is normalizing:

Theorem (normalization)

For every well-typed term $\Gamma \vdash \mathrm{M}: \mathrm{A}$ there is a normal term $\quad \Gamma \vdash \mathrm{N}: \mathrm{A}$ such that $\mathrm{M} \downarrow_{\beta} \mathrm{N}$.

Moreover, every reduction strategy succeeds in normalizing any term:

Theorem (termination)

Every sequence of β-reductions in STLC is finite.

Type Safety

Together, confluence, subject reduction and termination guarantee that any interpreter for STLC will evaluate any well-typed program to a unique value without the possibility of crashing or hanging.

Beyond STLC

There are typed λ-calculi richer than STLC that also have these type safety properties.

Under the Curry-Howard isomorphism we can add type formers corresponding to full first-order logic:
disjunction \vee,
falsity \perp,
universal quantification \forall,
existential quantification \exists.

There are several programming languages and mathematical proof assistants that are designed in this way.

