
The Curry-Howard Isomorphism

CSCI 2210

2023-11-27

Logic in Pure Lambda Calculus

We can encode logic and arithmetic in pure λ-calculus using Church encodings.
However, this is not very pleasant to work with.

Pure λ-calculus is equivalent in computational power to Turing machines.
However, this means that the normalization problem is not decidable.

The λ-calculus was intended as a tool to study mathematical logic.
But nonterminating β-reductions make it unsuitable for this purpose.

2

Strength Through Weakness
To use λ-calculus for mathematical logic people sought to restrict the set of
admissible terms to those that can be interpreted into sets and functions.

This excludes terms like:
• λ 𝑥 . 𝑥 𝑥, because no mathematical function is an element of its own domain,
• (λ 𝑥 . 𝑥 𝑥) (λ 𝑥 . 𝑥 𝑥), which has no normal form.

One way to do this is to begin with a set of primitive terms and inductively add
terms of certain forms that we know preserve desired properties.

This is the idea behind simply-typed λ-calculus (STLC).

3

Types of STLC
We start with an arbitrary finite set of base types ι.
A type of the simply-typed λ-calculus is given by the following inductive definition:
base type: If A ∈ ι then A is a type.
product types: If A and B are types then A × B is a type.
function types: If A and B are types then A → B is a type.
unit type: Unconditionally, 1 is a type.
By convention:

• × binds more tightly than → , so “A × B → C” means (A × B) → C,
• → associates to the right, so “A → B → C” means A → (B → C).

The set of types is called “Ty”.
4

Terms of STLC
We start with a countably infinite set of variables V.

A term of the simply-typed λ-calculus is given by the following inductive definition:

variable: If 𝑥 ∈ V then 𝑥 is a term.
application: If M and N are terms then M N is a term.
abstraction: If 𝑥 is a variable, A is a type, and M is a term then λ 𝑥∶A . M is a term.
pairing: If M and N are terms then ⟨M , N⟩ is a term.
projection: If M is a term then π0 M and π1 M are terms.
it: Unconditionally, ⋆ is a term.

The set of terms is called “Tm”.
5

Type Assignment
In STLC we admit only those terms that are well-typed.

These are terms to which we can give a type assignment.

The notation “M ∶ A” means “term M has the type A”.

The type of a term depends on the types of its subterms, and ultimately on the
types of its variables.

A typing context is a partial function from variables to types Γ ∶ V ⇀ Ty
giving type assignments for variables.

A context is typically written as a sequence, “𝑥0 ∶ A0, 𝑥1 ∶ A1, ⋯, 𝑥𝑛 ∶ A𝑛”.

6

Typing Judgements
A typing judgement is a type assignment for a term in a context that includes all of
its free variables.

It is typically written using sequent notation:

typing context
⏞Γ ⊢ M ∶ A⏟

type assignment

For example, the typing judgement

Γ, 𝑥 ∶ A ⊢ 𝑥 ∶ A

means, “in a context where the variable 𝑥 has type A, the term consisting the
variable 𝑥 has type A”.

7

Typing Rules
The typing judgements of simply-typed λ-calculus are inductively generated by:
Variables:

Γ, 𝑥 ∶ A ⊢ 𝑥 ∶ A var

Function Types:
Γ, 𝑥 ∶ A ⊢ M ∶ B

Γ ⊢ λ 𝑥∶A . M ∶ A → B → + Γ ⊢ M ∶ A → B Γ ⊢ N ∶ A
Γ ⊢ M N ∶ B → −

Product Types:
Γ ⊢ M ∶ A Γ ⊢ N ∶ B

Γ ⊢ ⟨M , N⟩ ∶ A × B ×+ Γ ⊢ M ∶ A × B
Γ ⊢ π0 M ∶ A

×−0
Γ ⊢ M ∶ A × B
Γ ⊢ π1 M ∶ B

×−1

Unit Type:
Γ ⊢ ⋆ ∶ 1 1+

8

Typing Derivations
A typing derivation is a tree built from the typing rules where all leaves are rules
without premisses:

𝑥 ∶ A → A, 𝑦 ∶ A ⊢ 𝑥 ∶ A → A
var

𝑥 ∶ A → A, 𝑦 ∶ A ⊢ 𝑥 ∶ A → A
var

𝑥 ∶ A → A, 𝑦 ∶ A ⊢ 𝑦 ∶ A
var

𝑥 ∶ A → A, 𝑦 ∶ A ⊢ 𝑥 𝑦 ∶ A
→ −

𝑥 ∶ A → A, 𝑦 ∶ A ⊢ 𝑥 (𝑥 𝑦) ∶ A
→ −

𝑥 ∶ A → A ⊢ λ 𝑦 ∶ A . 𝑥 (𝑥 𝑦) ∶ A → A
→ +

⊢ λ 𝑥 ∶ A → A . λ 𝑦 ∶ A . 𝑥 (𝑥 𝑦) ∶ (A → A) → A → A
→ +

The typing rules have the property that there is a unique rule for each term-forming
operation in the conclusion so constitute a type-checking algorithm to determine
whether a term has a specified type.

9

Type Inhabitation
The type inhabitation problem asks whether a type contains any closed terms.

For example, we can find a term of type A × B → B × A:

𝑥 ∶ A × B ⊢ 𝑥 ∶ A × B var

𝑥 ∶ A × B ⊢ π1 𝑥 ∶ B
×−1

𝑥 ∶ A × B ⊢ 𝑥 ∶ A × B var

𝑥 ∶ A × B ⊢ π0 𝑥 ∶ A
×−0

𝑥 ∶ A × B ⊢ ⟨π1 𝑥 , π0 𝑥⟩ ∶ B × A ×+

⊢ λ 𝑥 ∶ A × B . ⟨π1 𝑥 , π0 𝑥⟩ ∶ A × B → B × A → +

It’s worth thinking about how we could find such a term.

In contrast, it’s not possible to find a term of type 1 → A.

10

Propositions as Types
Theorem
If we interpret base types as atomic propositions
and the type formers as logical connectives as follows:

• 1 as truth ⊤,
• × as conjunction ∧ ,
• → as implication ⊃ ,

then a type is inhabited exactly when the corresponding logical proposition is a
tautology.

So:
• The proposition A ∧ B ⊃ B ∧ A is a tautology,
• The proposition ⊤ ⊃ A is not a tautology: it is false whenever A is false.

11

Terms as Proofs
Theorem
Moreover, we can interpret each term of a given type as a proof of the
corresponding proposition.

This determines a constructive logic known as intuitionistic logic.

In intuitionistic logic, proofs are themselves computational objects.

For example, the λ-calculus term λ 𝑥 ∶ A × B . ⟨π1 𝑥 , π0 𝑥⟩ ∶ A × B → B × A
corresponds to an intuitionistic proof of the proposition A ∧ B ⊃ B ∧ A,
which is an algorithm for turning a proof of A ∧ B into a proof of B ∧ A.

12

Statics and Dynamics
Last time we looked at the statics of STLC:

• what are the types?
• what are the terms?
• what type, if any, does a given term have?

Previously, we studied the dynamics of pure λ-calculus:
• which terms can a given term β-reduce to?
• does a term normalize?
• if so, what is its normal form?
• do two terms have the same normal form?

Now we turn to the dynamics of STLC.
13

Typed β-Reduction
Now we have more kinds of β-reducible expressions (redexes).
For function types we have redexes like in pure λ-calculus:

application
⏞⏞⏞⏞⏞(λ 𝑥∶A . M⏟⏟⏟⏟⏟

abstraction
) N →β M[N/𝑥]⏟

substitution

For product types we have redexes for projecting from a pair:
projection

⏞⏞⏞⏞⏞π0 ⟨M , N⟩⏟
pairing

→β M and
projection

⏞⏞⏞⏞⏞π1 ⟨M , N⟩⏟
pairing

→β N

These follow a pattern: if we introduce a term of function/product type
and then eliminate it, the result is something simpler.
There is no β-rule for terms of unit type. (Why not?)
As in pure λ-calculus, we can apply β-reductions within subterms. 14

Subject Reduction

The relation β is type preserving in the following sense:

Theorem
For any term well-typed term Γ ⊢ M ∶ A,
if M →β N then Γ ⊢ N ∶ A

This means that if a program computes a result,
then the result will have the same type as the program that computed it.

15

Confluence
Adding types does not interfere with the confluence of β-reduction.

Theorem
The relation β∗ is confluent in the sense that for any well-typed term Γ ⊢ M ∶ A,

∀ N0, N1 . if M →β∗ N0 and M →β∗ N1 then ∃ P . N0 →β∗ P and N1 →β∗ P.

M

N0 N1

P

β∗ β∗

β∗ β∗

16

Desiderata of STLC

Recall that the reason for imposing types on λ-calculus was to restrict the
admissible terms to those that are semantically meaningful.

The β-rules for product and function types ensure that they behave like
mathematical products and functions.

We also want to exclude terms that don’t have normal forms, like
Ω ≔ (λ 𝑥 . 𝑥 𝑥) (λ 𝑥 . 𝑥 𝑥).

In this regard STLC is as good as it could possibly be.

17

Normalization

STLC is normalizing:

Theorem (normalization)
For every well-typed term Γ ⊢ M ∶ A
there is a normal term Γ ⊢ N ∶ A such that M ↓β N.

Moreover, every reduction strategy succeeds in normalizing any term:

Theorem (termination)
Every sequence of β-reductions in STLC is finite.

18

Type Safety

Together, confluence, subject reduction and termination guarantee that
any interpreter for STLC will evaluate any well-typed program to a unique value
without the possibility of crashing or hanging.

19

Beyond STLC
There are typed λ-calculi richer than STLC that also have these type safety
properties.

Under the Curry-Howard isomorphism we can add type formers corresponding to
full first-order logic:
disjunction ∨ ,
falsity ⊥,
universal quantification ∀,
existential quantification ∃.

There are several programming languages and mathematical proof assistants that
are designed in this way.

20

