
Context-Free Languages

CSCI 2210

2023-10-16 and 2023-10-18

Non-Regular Languages

We used the pumping lemma to show that some string languages are not regular.

Among these are

• 0𝑛 1𝑛, the language of a run of 0s followed by an equal-length run of 1s,
• 𝑤 𝑤R, the language of even-length palindromes (strings followed by their own

reversal).

Intuitively, this is because we need an unbounded amount of memory to keep track

of some feature of interest.

But the amount of information that an NFA can store is bounded by the number of

its states.

2

Adding Memory to an NFA

We can remedy this by giving an NFA an external memory.

There are several possible data structures we could use for such a memory:

dictionary: providing random access

linked list: providing sequential access

tree: providing hierarchical access

etc.

3

Stack Memory

Here, we consider a very simple form of memory in the form of a stack.

A stack is either empty or else consists of a head element and a tail stack.

Given any element 𝑥 and stack 𝑥𝑠 we can push 𝑥 onto 𝑥𝑠 forming a stack with

head 𝑥 and tail 𝑥𝑠.

If 𝑥𝑠 is a nonempty stack then we can pop it to obtain its head element and tail

stack.

For any element and stack we have that:

pop(push(𝑥 , 𝑥𝑠)) = (𝑥 , 𝑥𝑠)

i.e.

push ⋅ pop = id

4

Pushdown Automata

A (nondeterministic ε-) pushdown automaton (“PDA”) M has the following

components:

input alphabet: a nonempty finite set of symbols Σ,

state set: a nonempty finite set of states Q,

start state: a chosen state 𝑞0 ∈ Q,

accept state set: a chosen subset of states F ⊆ Q,

stack alphabet: a finite set of symbols Γ,

state transition relation: a relation Δ ∶ Q × Σε × Γε ⇸ Q × Γε.

5

PDA State Transition Graph

We can represent a PDA M using a state transition graph.

The vertex set is Q.

For vertices 𝑞𝑎, 𝑞𝑏 ∈ Q, optional input symbol 𝑠 ∈ Σε, and optional stack symbols

𝑥, 𝑦 ∈ Γε, there is an edge (𝑠, 𝑥 ↦ 𝑦) ∶ 𝑞𝑎 → 𝑞𝑏 just in case

Δ ((𝑞𝑎 , 𝑠 , 𝑥) ⤍ (𝑞𝑏 , 𝑦)).
• The notation “𝑥 ↦ 𝑦” means that we pop 𝑥 and push 𝑦 on the stack.

• If 𝑥 resp. 𝑦 is ε then we don’t pop resp. push anything.

• We use “$” as shorthand for empty stack, so “$ ↦ 𝑦” means “push 𝑦 to the

empty stack”.

6

Example: PDA State Transition Graph Diagram
Let M0𝑛1𝑛 be the PDA specified by:

𝑞0 𝑞1 𝑞2

0, ε ↦ 𝑖

1, 𝑖 ↦ ε

ε, $ ↦ ε

1, 𝑖 ↦ ε

ε, $ ↦ ε

This means:

• Σ = {0, 1},
• Q = {𝑞0, 𝑞1, 𝑞2},
• 𝑞0 = 𝑞0,
• F = {𝑞2},
• Γ = {𝑖},

•
Δ 0 1 ε

𝑖 $ ε 𝑖 $ ε 𝑖 $ ε
𝑞0 {(𝑞0 , 𝑖)} {(𝑞1 , ε)} {(𝑞2 , ε)}
𝑞1 {(𝑞1 , ε)} {(𝑞2 , ε)}
𝑞2

7

Language of a PDA: Operational Semantics
Each PDA M over input alphabet Σ determines a language L(M)
according to the following operational semantics.

Given an input string 𝑤 ∈ Σ∗:

• M begins in the start state 𝑞0 with an empty stack $,
• M inspects the symbols of 𝑤 left-to-right one at a time,

• If M is in state 𝑞𝑎 inspecting input symbol 𝑠 then M may transition to state 𝑞𝑏 if
Δ ((𝑞𝑎 , 𝑠 , 𝑥) ⤍ (𝑞𝑏 , 𝑦)) by popping 𝑥 and pushing 𝑦 on the stack,

• If 𝑥 rsp. 𝑦 is ε then M may transition without popping rsp. pushing the stack,

• If Δ ((𝑞𝑎 , ε , 𝑥) ⤍ (𝑞𝑏 , 𝑦)) then M may transition without consuming input,

• Upon exhausting 𝑤, there is a set of states Q𝑓 that M may be in,

• We say 𝑤 ∈ L(M) just in case Q𝑓 ∩ F ≠ ∅.
8

Language of a PDA: State Transition Graph Interpretation

For a PDA M, each word 𝑤 ∈ Σ∗ determines a set of paths in the state transition

graph all with source 𝑞0.

The state transition relation Δ determines where these paths go at each step.

We can extend a path 𝑝 ∶ 𝑞0 → 𝑞𝑎 by an edge (𝑠 , 𝑥 ↦ 𝑦) ∶ 𝑞𝑎 → 𝑞𝑏 if the next

symbol in the word is 𝑠, the top of the stack is 𝑥, and Δ ((𝑞𝑎 , 𝑠 , 𝑥) ⤍ (𝑞𝑏 , 𝑦)),
or if 𝑠 resp. 𝑥 is ε without consulting the word resp. stack.

We take the union of all paths obtained by extending each path 𝑝 by each such

edge.

A path 𝑞0 → 𝑞𝑓 constructed in this way is called a run of M.

PDA M accepts word 𝑤 just in case there is an accepting run of M labeled by 𝑤.

9

Example: Language of M0𝑛1𝑛

𝑞0 𝑞1 𝑞2

0, ε ↦ 𝑖

1, 𝑖 ↦ ε

ε, $ ↦ ε

1, 𝑖 ↦ ε

ε, $ ↦ ε

decides the language of words with a run of 0s followed by an equal-length run of

1s.

for example:

• word 0 1 is accepted by run [(𝑞0), 0, (𝑞0), 1, (𝑞1), ε, (𝑞2)]
• word 0 0 1 1 is accepted by run [(𝑞0), 0, (𝑞0), 0, (𝑞0), 1, (𝑞1), 1, (𝑞1), ε, (𝑞2)]

We have left the effect on the stack implicit, but it must be verified.
10

Context-Free Languages

We call a string language context-free if there is a PDA that decides it.

Theorem
Every regular string language is context-free.

Proof.
An ε-NFA is just a PDA without a stack.

So a regular language is decided by a PDA with stack alphabet Γ ≔ ∅.

11

Activity: Language of a PDA

Give a description of the language decided by the following PDA:

𝑞0 𝑞1 𝑞2

0, ε ↦ 0

1, ε ↦ 1

ε, ε ↦ ε

0, 0 ↦ ε

1, 1 ↦ ε

ε, $ ↦ ε

12

Machine Models and Language-Based Models

Recall that we have two equivalent ways to describe the regular string languages:

finite automata: a family of machine models which decides them,

regular expressions: a language-based model which describes them.

We saw last time that PDAs constitute a machine model for deciding context-free

string languages.

In fact, there is a language-based model for describing them as well.

13

Context-Free Grammars

A context-free grammar (“CFG”) consists of:

terminals: a finite set of symbols Σ

nonterminals: a disjoint nonempty finite set of symbols V

start symbol: a symbol S ∈ V

production rules: a relation R ∶ V ⇸ (V ∪ Σ)∗

The nonterminals are also called “variables”.

The relation R can be expressed as a list of rules, called “production clauses”.

By convention the source of the first clause is the start symbol S.

14

Example: Context-Free Grammar G0𝑛1𝑛

Consider the context-free grammar given by:

terminals: Σ ≔ {0, 1}

nonterminals: V ≔ {A}

start symbol: A

production rules: R ≔

𝑟1: A ⤍ 0 A 1

𝑟2: A ⤍ ε

15

Parse Tree of a Context-Free Grammar

A context-free grammar G determines a set of parse trees as follows:

• Each terminal and nonterminal symbol determines a label for edges.

• Each terminal symbol 𝑡 ∈ Σ also determines a leaf node whose incoming

edge is labeled by 𝑡.
• Each production clause 𝑟 ∶ A ⤍ 𝑤 determines an internal node whose

incoming edge is labeled by A and whose outgoing edges are labeled by 𝑤.

Any tree with root labeled by the start symbol built in this way is a parse tree for G.

16

Example: Parse Trees for G0𝑛1𝑛

The nodes for parse trees of the context free grammar G0𝑛1𝑛 are:

0

0 ,

1

1 ,
A
𝑟1

0 A 1

,
A
𝑟2

17

Example: Parse Trees for G0𝑛1𝑛 ctd.
From these we can build parse trees such as:

A

𝑟2 ,

A

𝑟1

0 𝑟2 1

,

A

𝑟1

0 𝑟1

0 𝑟2 1

1

,

A

𝑟1

0 𝑟1

0 𝑟1

0 𝑟2 1

1

1

We may omit writing either the edge labels or the clause labels,

as each can be inferred from the other.

18

Tree Fringe

The fringe of a tree is the finite sequence of its leaf nodes, in the same order they

appear in the tree.

For example, the fringe of

A

𝑟1

0 𝑟1

0 𝑟2 1

1

is [0, 0, 1, 1].

19

Language of a Context-Free Grammar

The fringe of a parse tree for a context-free grammar G is a word over the alphabet

of its terminal symbols.

The set of all such words is the (string) language of this context-free grammar,

L(G).

For example, 0 0 1 1 ∈ L(G0𝑛1𝑛).

Indeed, L(G0𝑛1𝑛) is the string language of words consisting of a run of 0s followed
by an equal-length run of 1s.

We used the pumping lemma to show that this language is not regular,

and we built a PDA that decides it.

20

Activity: CFG for Palindromes

Devise a context-free grammar G𝑤𝑤R so that L(G𝑤𝑤R) is L𝑤𝑤R,

the string language of even-length palindromes over the alphabet {0, 1}.

Then test your grammar by making parse trees for:

• ε
• 0 1 1 0
• 1 1 0 0 1 1

21

Ambiguity
Some CFGs allow us to construct more than one parse tree for a given string.

Consider the CFG implied by:

𝑟+ ∶ A ⤍ A + A , 𝑟× ∶ A ⤍ A × A , 𝑟𝑛 ∶ A ⤍ 𝑛

The string 𝑛 + 𝑛 × 𝑛 could be the fringe of either of the following parse trees:

A
𝑟+

𝑟𝑛

𝑛

+ 𝑟×

𝑟𝑛

𝑛

× 𝑟𝑛

𝑛

or A
𝑟×

𝑟+

𝑟𝑛

𝑛

+ 𝑟𝑛

𝑛

× 𝑟𝑛

𝑛

22

Ambiguous Grammars

CFGs where a string can have multiple possible parse trees are ambiguous.

Often it is possible to convert an ambiguous CFG into an unambiguous one that

specifies the same language.

However, there are some string languages that have only ambiguous CFGs.

23

Some Intuition for CFGs

Each nonterminal symbol of a CFG determines a tree-structured language.

The way these nonterminals appear in the production rules for each other

determines the mutually inductive structure of these languages.

CFGs were originally proposed as a way to model the recursive structure of natural

languages like English.

They have since become invaluable in parsing for programming languages.

24

A Natural Language CFG

SENTENCE ⤍ NOUN-PHRASE VERB-PHRASE

NOUN-PHRASE ⤍ CMPLX-NOUN | CMPLX-NOUN PREP-PHRASE

VERB-PHRASE ⤍ CMPLX-VERB | CMPLX-VERB PREP-PHRASE

PREP-PHRASE ⤍ PREP CMPLX-NOUN

CMPLX-NOUN ⤍ ARTICLE NOUN

CMPLX-VERB ⤍ VERB | VERB NOUN-PHRASE

ARTICLE ⤍ a | the

NOUN ⤍ boy | girl | flower

VERB ⤍ sees | likes

PREP ⤍ with

25

Equivalence of PDAs and CFGs

Theorem
A string language is decided by a PDA just in case it is described by a CFG.

26

