
Church–Turing Thesis

CSCI 2210

2023-11-15



Turing Computable Functions
We have seen what it means for language to be decidable by Turing machine:
There is a TM that for any string over the input alphabet halts and either accepts or
rejects the string, according to its state.
However, a TM may leave some contents in its memory when it halts.
By halting in its accepting state and and leaving a string in its memory, a TM M
realizes a partial function 𝑓 ∶ Σ∗ ⇀ Γ∗.
If M halts on all input strings then it realizes a (total) function 𝑓 ∶ Σ∗ → Γ∗.
That is to say, the machine M computes the function 𝑓 .
We can use strings to encode numbers (for example in binary).
If machine M computes function 𝑓 ∶ ℕ → ℕ we say that 𝑓 is Turing computable.

2



Lambda Computable Functions

We’ve seen how we can encode numbers in λ-calculus as well.
Let 𝑛 be the Church numeral for 𝑛 ∈ ℕ.
A λ-term M realizes a partial function 𝑓 ∶ ℕ ⇀ ℕ with

𝑓(𝑛) = 𝑟 if M 𝑛 ↓β 𝑟

If ∀ 𝑛 ∈ ℕ . ∃ 𝑟 ∈ ℕ . M 𝑛 ↓β 𝑟 then M also computes a function 𝑓 ∶ ℕ → ℕ and we
say that 𝑓 is lambda computable.

3



Church-Turing Equivalence

Theorem (Turing)
The functions 𝑓 ∶ ℕ → ℕ that are Turing-computable are the same ones that are
λ-computable.

Turing-computable functions = λ-computable functions

4



Effective Computability
Before the time of automated computation a “computer” was a person who
followed a formal description of an algorithm to compute a function.
A function that can be computed in this way, ignoring constraints on time, patience,
paper, etc., is called effectively computable.
Church and Turing independently proposed their respective models of computation
as an answer to the question, which functions are effectively computable?
Each asserted that the functions computable in their model of computation
coincide with the effectively computable ones:

λ-computable =⏟⏟⏟⏟⏟
Church’s thesis

effectively computable =⏟⏟⏟⏟⏟
Turing’s thesis

Turing-computable

But because the functions computable in their models coincide,
they were arguing for the same thing.

5



Church-Turing Thesis
The Church-Turing Thesis is the proposition that the effectively computable
functions coincide with the λ-computable / Turing-computable functions.

This is not a mathematical proposition, but a partly empirical and partly
philosophical one.

It is empirical in the sense that it can be disproved by exhibiting a function
computable by an idealized person following an algorithm that cannot be computed
in either model of computation.

It is philosophical in the sense that it is not clear what resources such an idealized
person should have access to.

6



Beyond the Church-Turing Thesis
In the original CTT, effectively computable refers to what a person can do, given
unbounded resources, patience, and time but without employing any creativity or
judgement.

But what are the resources?

What if the algorithm starts with building an electronic computer?

Or a quantum computer?

Or a wormhole to another galaxy?

7



Physical Church-Turing Thesis

The physical Church-Turing thesis (which was not asserted by Church or Turing)
asserts that the λ/Turing-computable functions coincide with those that can be
computed by any physically realizable means.

This thesis could be refuted at any moment by constructing a machine that
computes a function not computable by TM.

So far this thesis has not been refuted.

8



Feasible Computability

Computability is not the bright line it may naively appear.

If we don’t have the resources (time, memory, energy) to run a computation and
obtain the result, then knowing that the computation will eventually yield an answer
does us little good.

There are variations of CTT that make empirical claims about the functions that are
feasibly computable.

These are generally functions that require resources polynomial in the size if their
input.

9



Relative Computability
Rather than search the world for physical phenomena that can expand the set of
computable functions, we can posit models of computation that are more powerful
than those we know how to realize.
We can explore which functions are computable in such models, whether or not
they are physically realizable.
An intriguing example is Accelerating Turing Machines, where each computational
step takes half the time of the previous step.
In this model the halting problem is decidable:
On input ⟨M , 𝑤⟩ begin by writing a symbol representing “no”, then simulate running
M on 𝑤.
If the simulation ever halts then change the answer to “yes”.
In ∑𝑛∈ℕ 1/2𝑛 = 2 units of time you will know whether the simulation ever halted.

10


