
Homework 5
Theory of Computation (CSCI 2210)

due: 2023-11-29

Problem 1
In class we used a cardinality argument to show that not all (string) languages are recursively enumerable.
In this problem you will exhibit a particular language that is not recognized by any Turing machine.

Recall that the set of strings over a finite alphabet Σ, and the set of Turing machines over Σ, are each
countably infinite, which is to say that they can be placed in bijection with the natural numbers. Suppose
we have an arbitrary but fixed enumeration for strings ([𝑤0, 𝑤1, 𝑤2, ⋯]), and for TMs ([M0, M1, M2, ⋯]),
respectively.

Use diagonalization to construct a language D ⊆ Σ∗ that is not recognized by any TM: ∀ 𝑛 ∈ ℕ . D ≠ L(M𝑛).
Hint: For each 𝑛 ∈ ℕ come up with a way to determine whether or not 𝑤𝑛 ∈ D that guarantees that no TM
recognizes D.

Problem 2
Consider the following λ-terms:

i. (λ 𝑥 . 𝑥) (λ 𝑥 . 𝑥)
ii. (λ 𝑥 𝑦 . 𝑦) ((λ 𝑥 . 𝑥 𝑥) (λ 𝑥 . 𝑥 𝑥)) 𝑧
iii. (λ 𝑥 𝑦 𝑧 . 𝑥 𝑧 (𝑦 𝑧)) (λ 𝑥 𝑦 . 𝑥) (λ 𝑥 . 𝑥)

Do the following for each term above:

(a) Elaborate the term by making explicit the implied parentheses and expanding multiple bindings into
successive single bindings.

(b) Annotate the term with its binding structure by drawing an arrow from each bound occurrence of a
variable to its binding site.

(c) Give a β-reduction of the term to its normal form.

You may do this interactively at https://lambdacalc.io/, but please write down or provide a screen-
shot of your steps.

Problem 3
Prove that the following two λ-terms are not β-equivalent:

(λ 𝑥 𝑦 . 𝑥) (λ 𝑥 𝑦 . 𝑥) (λ 𝑥 𝑦 . 𝑦) and (λ 𝑥 𝑦 . 𝑦) (λ 𝑥 𝑦 . 𝑥) (λ 𝑥 𝑦 . 𝑦)

Please be precise in explaining how your argument is sufficient to establish the result.

Hint: You will need to appeal to one of the theorems that we learned about the λ-calculus.

1

https://lambdacalc.io/


Problem 4
Recall that we can encode the natural numbers and arithmetic operations in λ-calculus using Church numerals.

(a) Write out the Church-numeral encodings of the following two arithmetic expressions:

1 + 1 and 2

(b) Verify the mathematical fact that 1 + 1 = 2 by normalizing the encoding of the term on the left to the
encoding of the term on the right.

You may do this interactively at https://lambdacalc.io/, but please write down or provide a screen-
shot of your steps.

Problem 5
Here is Curry’s fixed point combinator implemented in Python:

Y = lambda f : \
(lambda x : f (lambda y : x (x) (y))) \
(lambda x : f (lambda y : x (x) (y)))

Recall that due to Python’s eager evaluation strategy we need to add one more layer of functions relative to
the Y-combinator we wrote in λ-calculus. However, this need not concern us, and you can rely on the fact
that this Python function computes fixed points.

Write a Python expression F such that Y (F) computes the Fibonacci function.

For example:

> list (map (Y (F) , range (10)))
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

You may use the ordinary Python numerals (0, 1, etc.), arithmetic operators (+, −, etc.), comparisons (==, <,
etc.), and conditionals (if...else). So in particular, you do not need to encode Church booleans or Church
numerals in Python.

Submit your solution as a Python file fib.py.

2

https://lambdacalc.io/

