
Homework 4
Theory of Computation (CSCI 2210)

due: 2023-11-08

Problem 1
Give a complete description (either the formal components or a state-transition graph) of a pushdown au-
tomaton that decides the language L0𝑛,12𝑛 , containing strings consisting of a run of 0s followed by a run of
twice as many 1s.

examples: ε, 0 1 1, 0 0 1 1 1 1
counterexamples: 0, 1, 1 1 0, 1 0 0, 0 1 1 0 1 1
Hint: recall the PDA for the language L0𝑛,1𝑛 that we defined in lecture and think about what needs to be
changed.

Problem 2
Consider the context-free grammar G implied by the following set of production rules:

𝑟1 ∶ EXPR ⤍ EXPR + TERM
𝑟2 ∶ EXPR ⤍ TERM
𝑟3 ∶ TERM ⤍ TERM × FCTR
𝑟4 ∶ TERM ⤍ FCTR
𝑟5 ∶ FCTR ⤍ (EXPR)
𝑟6 ∶ FCTR ⤍ 𝑥

For each of the following strings, either give a parse tree if it is in the language of G, or if it is not then briefly
explain why.

(a) 𝑥 + 𝑥
(b) 𝑥 × 𝑥 + 𝑥
(c) ((𝑥))
(d) 𝑥 + 𝑥 + 𝑥

Problem 3
Consider the following TM with input alphabet Σ ≔ {0, 1}:

working alphabet: Γ ≔ Σ ∪ {X, Y}
state set: {𝑞0, 𝑞1, 𝑞2, 𝑞3, 𝑞4, 𝑞ℎ}
start state: 𝑞0

halt state: 𝑞ℎ

1

state transition partial function:

δ 0 1 X Y ␣
𝑞0 (𝑞0 , 0 , R) (𝑞0 , 1 , R) − − (𝑞1 , ␣ , L)
𝑞1 (𝑞2 , X , R) (𝑞3 , Y , R) − − (𝑞ℎ , ␣ , R)
𝑞2 (𝑞2 , 0 , R) (𝑞2 , 1 , R) − − (𝑞4 , 0 , L)
𝑞3 (𝑞3 , 0 , R) (𝑞3 , 1 , R) − − (𝑞4 , 1 , L)
𝑞4 (𝑞4 , 0 , L) (𝑞4 , 1 , L) (𝑞1 , 0 , L) (𝑞1 , 1 , L) −
𝑞ℎ − − − − −

(a) Draw the state transition graph for this TM.

(b) Does this machine accept the input 0 1 1? If so, what are the contents of the memory when it halts?

Problem 4
When discussing how we can simulate a two-ended Turing machine with a one-ended Turing machine, we
asserted that the following two functions can be implemented as one-ended Turing machines:

memory right-shift: move the contents of the TM memory one cell to the right, duplicating the contents
of the left-most cell (if any), and return the memory pointer to its starting position.

memory left-shift: move the contents of the TM memory one cell to the left, deleting the contents of the
left-most cell (if any), and return the memory pointer to its starting position.

For example:
input right-shifted left-shifted

ε ε ε
0 0 0 ε

0 1 0 0 1 1
0 1 0 1 0 0 1 0 1 1 0 1

Implement these two operations as Turing machines in the concrete syntax of the TM simulator at https:
//turingmachine.io/ as programs shift_r.tm and shift_l.tm, respectively. Do this using only the
transitions that are allowed in a one-ended TM:

• do not push (make a transition (␣ ↦ 𝑥 , 𝑑)) at the left end of the memory, unless it is also the right end
of the memory; i.e., the memory is empty,

• do not pop (make a transition (𝑥 ↦ ␣ , 𝑑)) at the left end of the memory, unless it is also the right end
of the memory; i.e., the memory is a single cell.

You may assume an input alphabet of Σ ≔ {0, 1}.

Problem 5
It is an interesting fact that a doubly-linked list can be implemented using two stacks. We’ll call the two
stacks left and right. The idea is as follows.

• The top element, if any, of the right stack represents the current cell of the doubly-linked list.

• If the right stack is empty, that indicates that we have reached the right end of the doubly-linked list.

• If the left stack is empty, that indicates that we have reached the left end of the doubly-linked list.

• To move one cell to the right in the doubly-linked list we pop an element from the right stack and push
it onto the left stack.

• To move one cell to the left in the doubly-linked list we pop an element from the left stack and push it
onto the right stack.

2

https://turingmachine.io/
https://turingmachine.io/

• To grow the right end of the doubly-linked list by one cell we push a new element onto an empty right
stack.

• To grow the left end of the doubly-linked list by one cell we push a new element onto the right stack
with an empty left stack.

• To shrink the right end of the doubly-linked list by one cell we pop the only element of the right stack
and discard it.

• To shrink the left end of the doubly-linked list by one cell we pop the top element of the right stack
and discard it with an empty left stack.

An 𝑛-stack pushdown automaton (𝑛-PDA) is a generalization of the PDA model of computation. In each
state transition it can optionally read an input symbol and optionally attempt to pop an element from each
of its 𝑛 stacks to examine. Based on its current state and the result of these operations it decides which state
to transition to, and what, if anything, to push onto each of its stacks.

Give a high-level description of how we could simulate a Turing machine using a 2-PDA by answering the
following questions:

(a) What features of a 2-PDA can we use to simulate the TM’s memory?

(b) How can we load a 2-PDA’s input string into the simulator of the TM’s memory so that it is in the right
order with the memory pointer of the simulated TM at the correct starting position?

(c) How can we simulate a single step of TM computation with a 2-PDA?
Hint: consider each of the possible kinds of transition that a TM can make and think about how to
simulate each one.

3

