Homework 3

Theory of Computation (CSCI 2210)

due: 2023-10-15

Problem 1

Recall our expression language for arithmetic, $(\underline{0}, \underline{1}, \underline{+}, \underline{\times})$ and the two interpretations that we gave for it, one in the natural numbers, $(0, 1, +, \times)$, and the other in the booleans, $(\bot, \top, \lor, \land)$.

Give an example of a syntactic equation $\underline{lexp} = \underline{rexp}$ that is satisfied in the boolean interpretation but not in the natural numbers interpretation.

Hint: notice that $\mathbb{B} := \{\top, \bot\}$ has only two elements while $\mathbb{N} := \{0, 1, 2, \cdots\}$ has a lot more.

Problem 2

Give regular expressions for each of the following languages over the alphabet $\{0, 1\}$:

(a) words that have odd length,

example: 010

counterexample: 0101

(b) words that begin in 0 and have even length or that begin in 1 and have odd length,

```
examples: 01, 101
```

counterexamples: 011, 10

(c) words containing at most two consecutive 1s,

examples: 010, 11011

counterexamples: 111,010110111

Problem 3

Practical implementations of regular expressions often include additional symbols not included in our definition, such as $-\underline{?}$ for an *optional* regular expression and $-\underline{+}$ for *at least one iteration* of a regular expression. The reason that we don't need to include these in the formal definition of regular expressions is they are *definable* in terms of the symbols we already have.

Define the symbols $\underline{?}$ and $\underline{+}$ in terms of the symbols $\{\underline{\emptyset}, \underline{\varepsilon}, \underline{*}, \underline{+}, \underline{\cdot}\}$ by completing the following:

- $\underline{r?} :=$ some regular expression involving r
- $\underline{r^+} :=$ some regular expression involving r

Problem 4

Apply the recursive reduction algorithm for converting an NFA to a regular expression to the following NFA:

by first eliminating vertex q_2 and then eliminating vertex q_1 , and verify that you obtain the regular expression $(r_{11} + r_{12}r_{22}*r_{21})*r_{12}r_{22}*$ as was claimed in lecture. Please show the state of the graph after each step of the algorithm since I already told you the result.

Problem 5

Use the *pumping lemma* to show that the language of balanced parentheses over the alphabet $\{"\{","\}"\}\$ (i.e., the two-element set consisting of opening parenthesis and closing parenthesis) is not regular.

Hint: for the *carefully chosen word* to apply the pumping lemma to, try $\{^p \cdot \}^p$ (i.e., p opening parentheses followed by p closing parentheses) where p is the pumping length for this language.