Practice Quiz

CSCI 2210

2023-11-15

Elaborating Lambda Terms

Elaborate the following λ-term making explicit the implied parentheses and expanding multiple variable bindings into successive single bindings:

$$
\lambda x y z \cdot x z(y z)
$$

Variable Binding

Annotate the binding structure of the following λ-term by drawing an arrow from each bound occurrence of a variable to its binding site.

$$
(\lambda x \cdot(\lambda x \cdot x) x((\lambda x \cdot x) x)) x
$$

Bound Variable Renaming

The Barendregt convention on bound variables is to use α-equivalence to rename them such that:

- bound variable names are distinct from free variable names,
- a bound variable name is used at only a single binding site within a term.

This way it is easy to tell whether a variable occurrence is bound, and if so, where.

Apply the Barendregt convention to the term,

$$
(\lambda x \cdot(\lambda x \cdot x) x((\lambda x \cdot x) x)) x
$$

Beta-Reduction of Terms

β-reduce the following λ-terms to their normal forms, if they have them, if not briefly explain why not.

- $(\lambda x y \cdot x)(\lambda x \cdot y) x$
- $(\lambda x y \cdot y)((\lambda x . x x)(\lambda x \cdot x x)) z$

Solving Fixed Point Equations

Recall that the Y-combinator gives a fixed point of any λ-term.
$\mathrm{Y}=\lambda f .(\lambda x \cdot f(x x))(\lambda x . f(x x))$.
Here is a recursive definition of the addition function:

$$
\operatorname{add}=\lambda m \cdot \lambda n \cdot \operatorname{is} 0 m n(\operatorname{succ}(\operatorname{add}(\operatorname{pred} m) n))
$$

The pure λ-calculus does not directly support recursion, but it can be implemented using fixed points.
Rewrite the function add as a fixed point of a function F such that,

$$
\text { YF } 23 \downarrow_{\beta} 5
$$

