Practice Quiz

CSCI 2210

2023-11-15

Elaborating Lambda Terms

Elaborate the following λ -term making explicit the implied parentheses and expanding multiple variable bindings into successive single bindings:

 $\lambda x y z$. x z (y z)

Annotate the binding structure of the following λ -term by drawing an arrow from each bound occurrence of a variable to its binding site.

$$(\lambda x . (\lambda x . x) x ((\lambda x . x) x)) x$$

Bound Variable Renaming

The *Barendregt convention* on bound variables is to use α -equivalence to rename them such that:

- bound variable names are distinct from free variable names,
- a bound variable name is used at only a single binding site within a term.

This way it is easy to tell whether a variable occurrence is bound, and if so, where.

Apply the Barendregt convention to the term,

$$(\lambda x . (\lambda x . x) x ((\lambda x . x) x)) x$$

Beta-Reduction of Terms

 β -reduce the following λ -terms to their normal forms, if they have them, if not briefly explain why not.

- $(\lambda x y . x) (\lambda x . y) x$
- $\bullet \ (\lambda \, x \, y \, . \, y) \left((\lambda \, x \, . \, x \, x) \left(\lambda \, x \, . \, x \, x \right) \right) z$

Solving Fixed Point Equations

Recall that the Y-combinator gives a *fixed point* of any λ -term. Y = $\lambda f \cdot (\lambda x \cdot f (x x)) (\lambda x \cdot f (x x)).$

Here is a recursive definition of the addition function:

 $add = \lambda m . \lambda n . is0 m n (succ (add (pred m) n))$

The pure $\lambda\text{-calculus}$ does not directly support recursion, but it can be implemented using fixed points.

Rewrite the function add as a fixed point of a function F such that,

 $Y F 2 3 \downarrow_{\beta} 5$