Homework 1:
 States and Measurements

Quantum Information Systems Wesleyan University

due 2017.03.06

Problem 1 Recall that any orthonormal basis $\left(b_{0}, \cdots, b_{n-1}\right)$ has the identity decomposition property:

$$
\sum_{i}\left|b_{i}\right\rangle\left\langle b_{i}\right|=\operatorname{Id}_{n}
$$

Confirm via explicit calculation that the X-basis $(|+\rangle,|-\rangle)$ indeed has this property.
Problem 2 Compute the probability of a measurement on the state $|-\rangle$ resulting in the outcome corresponding to each of the vectors in the standard basis $(|0\rangle,|1\rangle)$.
Problem 3 Recall that orthonormal bases (D and E) for a vector space are complementary (or mutually unbiased) if the elements of each are indistinguishable by a measurement made in the other; i.e. if:

$$
\left\langle d_{i} \mid e_{j}\right\rangle\left\langle e_{j} \mid d_{i}\right\rangle
$$

is the same (real number $0 \leq p \leq 1$) for all $d_{i} \in \mathrm{D}$ and $e_{j} \in \mathrm{E}$.
Suppose \mathbb{V} is an n-dimensional vector space with complementary orthonormal bases D and E. For $0 \leq i<n$ and $0 \leq j<n$, what is the probability of basis state $\left|d_{i}\right\rangle \in \mathrm{D}$ resulting in the measurement outcome corresponding to basis state $\left|e_{j}\right\rangle \in \mathrm{E}$? Please explain your answer.

Problem 4 We have met the Z-basis $(|0\rangle,|1\rangle)$ and the X-basis $(|+\rangle,|-\rangle)$, which are complementary. Another important basis for \mathbb{C}^{2} is the Y-basis:

$$
\begin{aligned}
|\uparrow\rangle & :=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
i
\end{array}\right] \\
|\downarrow\rangle & :=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
1 \\
-i
\end{array}\right]
\end{aligned}
$$

a. Compute the norm of each Y-basis vector.
b. Show that the Y-basis vectors are orthogonal $(|\uparrow\rangle \perp|\downarrow\rangle)$.
c. Show that the X-basis and Y-basis are complementary.
d. Show that the Y-basis and Z-basis are complementary.

Conclude that the X-, Y-, and Z-bases are three (pairwise) complementary orthonormal bases for \mathbb{C}^{2}.

