Locally Cubical Gray Categories

Edward Morehouse

Tallinn University of Technology

2022-12-19

Overview

Gray defined a monoidal product for 2-categories that is left adjoint to the internal hom,

$$
-\otimes-: 2 \mathrm{CAT} \times 2 \mathrm{CAT} \rightarrow 2 \mathrm{CAT}
$$

and used this to give an algebraic presentation of the 3-dimensional structure of 2-categories and their morphisms [Gra74].

Overview

Gray defined a monoidal product for 2-categories that is left adjoint to the internal hom,

$$
-\otimes-: 2 \mathrm{CAT} \times 2 \mathrm{CAT} \rightarrow 2 \mathrm{CAT}
$$

and used this to give an algebraic presentation of the 3-dimensional structure of 2-categories and their morphisms [Gra74].

Böhm recently defined a Gray-monoidal product functor for double categories [Böh19].

$$
-\otimes-: \text { DblCat } \times \text { DblCat } \rightarrow \text { DblCat }
$$

Overview

Gray defined a monoidal product for 2-categories that is left adjoint to the internal hom,

$$
-\otimes-: 2 \mathrm{CAT} \times 2 \mathrm{CAT} \rightarrow 2 \mathrm{CAT}
$$

and used this to give an algebraic presentation of the 3-dimensional structure of 2-categories and their morphisms [Gra74].

Böhm recently defined a Gray-monoidal product functor for double categories [Böh19].

$$
-\otimes-: \text { DblCat } \times \text { DblCat } \rightarrow \text { DblCat }
$$

We use this to give an algebraic presentation of the 3-dimensional structure of double categories and their morphisms, and consider the one-object case, which endows double categories with Gray-monoidal structure.

Double Categories

A double category [Ehr62] is a category internal to CAT,

Double Categories

A double category [Ehr62] is a category internal to CAT,

...or a 2-dimensional category of cubical shape, with:
0 -cells or "objects", A,

Double Categories

A double category [Ehr62] is a category internal to CAT,

...or a 2-dimensional category of cubical shape, with:
0 -cells or "objects", A, A', vertical 1-cells or "arrows", $f: \mathrm{A} \rightarrow \mathrm{A}^{\prime}$,

$$
f \frac{\mathrm{~A}}{\mathrm{~A}^{\prime}}
$$

Double Categories

A double category [Ehr62] is a category internal to CAT,

...or a 2-dimensional category of cubical shape, with:
0 -cells or "objects", A, A', B, M vertical 1-cells or "arrows", $f: \mathrm{A} \rightarrow \mathrm{A}^{\prime}$, horizontal 1-cells or "proarrows", $\mathrm{M}: \mathrm{A} \rightarrow \mathrm{B}$,

Double Categories

A double category [Ehr62] is a category internal to CAT,

...or a 2-dimensional category of cubical shape, with:
0 -cells or "objects", $\mathrm{A}, \mathrm{A}^{\prime}, \mathrm{B}, \mathrm{B}^{\prime}$, vertical 1-cells or "arrows", $\quad f: \mathrm{A} \rightarrow \mathrm{A}^{\prime}, g: \mathrm{B} \rightarrow \mathrm{B}^{\prime}$, horizontal 1-cells or "proarrows", $\mathrm{M}: \mathrm{A} \rightarrow \mathrm{B}, \mathrm{N}: \mathrm{A}^{\prime} \rightarrow \mathrm{B}^{\prime}$, 2 -cells or "squares", $\alpha:{ }_{f}^{\mathrm{M}} \diamond{ }_{\mathrm{N}}^{g}$.

Composition in Double Categories

Squares compose by pasting in both dimensions [Mye16]:

Composition in Double Categories

Squares compose by pasting in both dimensions [Mye16]:

By functoriality of U and \odot, these squares are well-defined:

Composition in Double Categories

Squares compose by pasting in both dimensions [Mye16]:

By functoriality of U and \odot, these squares are well-defined:

Technically, our double categories are weak, but coherence lets us pretend they are strict. [GP99]

Morphisms of Double Categories

There is a hierarchy of morphisms of double categories:
functors, $\mathrm{F}: \mathbb{C} \rightarrow \mathbb{D}$,

Morphisms of Double Categories

There is a hierarchy of morphisms of double categories:
functors, $\mathrm{F}: \mathbb{C} \rightarrow \mathbb{D}$, vertical transformations, $\alpha: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$,

Morphisms of Double Categories

There is a hierarchy of morphisms of double categories:
functors, $\mathrm{F}: \mathbb{C} \rightarrow \mathbb{D}$, vertical transformations, $\alpha: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$, horizontal transformations, $\gamma: \mathrm{F} \leftrightarrow \mathrm{G}$,

Morphisms of Double Categories

There is a hierarchy of morphisms of double categories:
functors, $\mathrm{F}: \mathbb{C} \rightarrow \mathbb{D}$, vertical transformations, $\alpha: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$, horizontal transformations, $\gamma: \mathrm{F} \rightarrow \mathrm{G}$, cubical modifications, $\mu:{ }_{\alpha}^{\gamma} \diamond_{\delta}^{\beta}$.

Morphisms of Double Categories

There is a hierarchy of morphisms of double categories:
functors, $\mathrm{F}: \mathbb{C} \rightarrow \mathbb{D}$, vertical transformations, $\alpha: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$, horizontal transformations, $\gamma: \mathrm{F} \rightarrow \mathrm{G}$, cubical modifications, $\mu:{ }_{\alpha}^{\gamma} \diamond_{\delta}^{\beta}$.

Classically, these are defined either internally or by components [GP99], but we would like to understand them algebraically.

Morphisms of Double Categories

There is a hierarchy of morphisms of double categories:
functors, $\mathrm{F}: \mathbb{C} \rightarrow \mathbb{D}$, vertical transformations, $\alpha: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$, horizontal transformations, $\gamma: \mathrm{F} \rightarrow \mathrm{G}$, cubical modifications, $\mu:{ }_{\alpha}^{\gamma} \diamond_{\delta}^{\beta}$.

Classically, these are defined either internally or by components [GP99], but we would like to understand them algebraically.

Gray worked out the algebraic structure for the 3-dimensional category comprising 2-dimensional globular categories and their morphisms [Gra74].

Morphisms of Double Categories

There is a hierarchy of morphisms of double categories:
functors, $\mathrm{F}: \mathbb{C} \rightarrow \mathbb{D}$, vertical transformations, $\alpha: \mathrm{F} \rightarrow \mathrm{F}^{\prime}$, horizontal transformations, $\gamma: \mathrm{F} \rightarrow \mathrm{G}$, cubical modifications, $\mu:{ }_{\alpha}^{\gamma} \diamond_{\delta}^{\beta}$.

Classically, these are defined either internally or by components [GP99], but we would like to understand them algebraically.

Gray worked out the algebraic structure for the 3-dimensional category comprising 2-dimensional globular categories and their morphisms [Gra74].

Using Böhm's Gray tensor product of double categories [Böh19] we do the same thing in the cubical setting.

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has

0 -cells, A,

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has
0 -cells, A, B,
1 -cells, $f: \mathrm{A} \rightarrow \mathrm{B}$,

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has
0 -cells, A, B,
1-cells, $f, f^{\prime}: \mathrm{A} \rightarrow \mathrm{B}$, vertical 2 -cells, $\alpha: f \rightarrow f^{\prime}$,

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has
0 -cells, A, B,
1-cells, $f, f^{\prime}, g: \mathrm{A} \rightarrow \mathrm{B}$, vertical 2-cells, $\alpha: f \rightarrow f^{\prime}$, horizontal 2-cells, $\gamma: f \rightarrow g$,

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has
0 -cells, A, B,
1 -cells, $f, f^{\prime}, g, g^{\prime}: \mathrm{A} \rightarrow \mathrm{B}$, vertical 2-cells, $\alpha: f \rightarrow f^{\prime}, \beta: g \rightarrow g^{\prime}$, horizontal 2-cells, $\gamma: f \rightarrow g, \delta: f^{\prime} \rightarrow g^{\prime}$, 3-cells, $\varphi:{ }_{\alpha}^{\gamma} \diamond_{\delta}^{\beta}$.

Locally Cubical Gray Categories - local composition

For each pair of 0 -cells we have a hom double category $\mathbb{C}(\mathrm{A} \rightarrow \mathrm{B})$.

A

Locally Cubical Gray Categories - principal composition

For $m, n \in \mathbb{N}$ with $m+n \leq 2$,
composing an $(m+1)$-cell with 0 -cell boundary $\mathrm{A} \rightarrow \mathrm{B}$ with an $(n+1)$-cell with 0 -cell boundary $\mathrm{B} \rightarrow \mathrm{C}$
yields an $(m+n+1)$-cell with 0 -cell boundary $\mathrm{A} \rightarrow \mathrm{C}$.

Locally Cubical Gray Categories - principal composition

For $m, n \in \mathbb{N}$ with $m+n \leq 2$,
composing an $(m+1)$-cell with 0 -cell boundary $\mathrm{A} \rightarrow \mathrm{B}$
with an $(n+1)$-cell with 0 -cell boundary $\mathrm{B} \rightarrow \mathrm{C}$
yields an $(m+n+1)$-cell with 0 -cell boundary $\mathrm{A} \rightarrow \mathrm{C}$.

We read off the boundaries of composite cells from the projection string diagram of a surface diagram.

Whiskerings

When $m=0$ or $n=0$ the principal composition is called whiskering $(-\circledast-)$.

Whiskerings

When $m=0$ or $n=0$ the principal composition is called whiskering $(-\circledast-)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

This variance for homogeneous interchangers is called "oplax", and its opposite "lax".

Principal Composition Laws

Principal composition is strictly unital and associative, and compatible with local composition in hom double categories.

We can "read off" laws from diagrams without critical points.
E.g.

$$
\chi_{(\alpha \circledast b, \gamma)}=\chi_{(\alpha, b \circledast \gamma)}
$$

Principal Composition Laws

Principal composition is strictly unital and associative, and compatible with local composition in hom double categories.

We can "read off" laws from diagrams without critical points.
E.g.

$$
(\varphi \odot \psi) \circledast b=(\varphi \circledast b) \odot(\psi \circledast b)
$$

Principal Composition Laws

Principal composition is strictly unital and associative, and compatible with local composition in hom double categories.

We can "read off" laws from diagrams without critical points.
E.g.

$$
X_{\left(\alpha, \beta \cdot \beta^{\prime}\right)}=\left(X_{(\alpha, \beta)} \cdot U\left(f^{\prime} \circledast \beta^{\prime}\right)\right) \odot\left(U(f \circledast \beta) \cdot X_{\left(\alpha, \beta^{\prime}\right)}\right)
$$

Principal Composition Laws

We don't get a structure by composing a 2 -cell with a 3 -cell because there are no 4 -cells.

Principal Composition Laws

We don't get a structure by composing a 2 -cell with a 3 -cell because there are no 4 -cells.

Instead we get the property of a naturality equation.
We can read these off of diagrams by perturbing them away from critical points [Mor22].

Locally Cubical Gray Categories of Interest

Proposition

There is a locally cubical Gray category where
0 -cells are double categories, 1 -cells are strict functors, vertical 2-cells are (lax and/or oplax) vertical transformations, horizontal 2 -cells are (lax and/or oplax) horizontal transformations, 3 -cells are cubical modifications.

Locally Cubical Gray Categories of Interest

Proposition
There is a locally cubical Gray category where
0 -cells are double categories, 1 -cells are strict functors, vertical 2-cells are (lax and/or oplax) vertical transformations, horizontal 2-cells are (lax and/or oplax) horizontal transformations, 3 -cells are cubical modifications.
Proposition
A (locally globular) Gray category is a locally cubical Gray category with trivial horizontal 2-cells.

Gray-Monoidal Double Categories

(The loop space of) a one-object locally cubical Gray category is a Gray-monoidal double category.

Gray-Monoidal Double Categories

(The loop space of) a one-object locally cubical Gray category is a Gray-monoidal double category.

This is essentially Böhm's "double category analogue of Gray monoids" obtained from the Gray monoidal product functor for double categories $-\otimes-$: DblCat \times DblCat \rightarrow DblCat. [Böh19]

Gray-Monoidal Double Categories

(The loop space of) a one-object locally cubical Gray category is a Gray-monoidal double category.

This is essentially Böhm's "double category analogue of Gray monoids" obtained from the Gray monoidal product functor for double categories $-\otimes-$: DblCat \times DblCat \rightarrow DblCat. [Böh19]

Generating $(m+n)$-cells of $\mathbb{C} \otimes \mathbb{D}$ are ordered pairs of an m-cell of \mathbb{C} and an n-cell of \mathbb{D}.

Gray-Monoidal Double Categories

(The loop space of) a one-object locally cubical Gray category is a Gray-monoidal double category.

This is essentially Böhm's "double category analogue of Gray monoids" obtained from the Gray monoidal product functor for double categories $-\otimes-:$ DblCat \times DblCat \rightarrow DblCat. [Böh19]

Generating $(m+n)$-cells of $\mathbb{C} \otimes \mathbb{D}$ are ordered pairs of an m-cell of \mathbb{C} and an n-cell of \mathbb{D}.

Double category \mathbb{C} is Gray-monoidal if functors $\otimes_{\mathbb{C}}: \mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C}$ and $\mathrm{I}_{\mathbb{C}}: \mathbb{1} \rightarrow \mathbb{C}$ form a monoid.

Braiding

The swap functor $S_{(\mathbb{C}, \mathbb{D})}: \mathbb{C} \otimes \mathbb{D} \rightarrow \mathbb{D} \otimes \mathbb{C}$ reverses ordered pairs.

Braiding

The swap functor $\mathrm{S}_{(\mathbb{C}, \mathbb{D})}: \mathbb{C} \otimes \mathbb{D} \rightarrow \mathbb{D} \otimes \mathbb{C}$ reverses ordered pairs.

A braiding for a Gray-monoidal double category with invertible interchangers \mathbb{C} is a vertical pseudo transformation $\sigma:(\mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C})\left(\otimes_{\mathbb{C}} \rightarrow S_{(\mathbb{C}, \mathbb{C})} \cdot \otimes_{\mathbb{C}}\right)$

Braiding

The swap functor $S_{(\mathbb{C}, \mathbb{D})}: \mathbb{C} \otimes \mathbb{D} \rightarrow \mathbb{D} \otimes \mathbb{C}$ reverses ordered pairs.

A braiding for a Gray-monoidal double category with invertible interchangers \mathbb{C} is a vertical pseudo transformation $\sigma:(\mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C})\left(\otimes_{\mathbb{C}} \rightarrow S_{(\mathbb{C}, \mathbb{C})} \cdot \otimes_{\mathbb{C}}\right)$ that is coherent for monoidal composition [KV94; Cra98]

Braiding

The swap functor $S_{(\mathbb{C}, \mathbb{D})}: \mathbb{C} \otimes \mathbb{D} \rightarrow \mathbb{D} \otimes \mathbb{C}$ reverses ordered pairs.

A braiding for a Gray-monoidal double category with invertible interchangers \mathbb{C} is a vertical pseudo transformation $\sigma:(\mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C})\left(\otimes_{\mathbb{C}} \rightarrow S_{(\mathbb{C}, \mathbb{C})} \cdot \otimes_{\mathbb{C}}\right)$ that is coherent for monoidal composition [KV94; Cra98] and Yang-Baxterators [BN96].

Syllepsis

A syllepsis for a braided Gray-monoidal double category \mathbb{C} is an invertible globular modification $v:\left(\otimes_{\mathbb{C}} \rightarrow \otimes_{\mathbb{C}}\right)\left(\mathrm{id}\left(\otimes_{\mathbb{C}}\right) \rightarrow \sigma \cdot(\mathrm{S} \cdot \cdot \sigma)\right)$ relating the unbraiding to a pair of consecutive braidings

Syllepsis

A syllepsis for a braided Gray-monoidal double category \mathbb{C}
is an invertible globular modification $v:\left(\otimes_{\mathbb{C}} \rightarrow \otimes_{\mathbb{C}}\right)\left(\operatorname{id}\left(\otimes_{\mathbb{C}}\right) \rightarrow \sigma \cdot(\mathrm{S} \cdot \sigma \sigma)\right)$
relating the unbraiding to a pair of consecutive braidings

that is coherent for monoidal composition [DS97].

Syllepsis

A syllepsis for a braided Gray-monoidal double category \mathbb{C}
is an invertible globular modification $v:\left(\otimes_{\mathbb{C}} \rightarrow \otimes_{\mathbb{C}}\right)\left(\operatorname{id}\left(\otimes_{\mathbb{C}}\right) \rightarrow \sigma \cdot(\mathrm{S} \cdot \cdot \sigma)\right)$
relating the unbraiding to a pair of consecutive braidings

that is coherent for monoidal composition [DS97]. A syllepsis is a symmetry if it is the unit of an adjoint equivalence $\sigma \dashv \mathrm{S} \cdot \cdot \sigma$.

Wrap-Up

The algebra of 3-dimensional Gray categories can be cumbersome, but the geometry is helpful in understanding what is going on.

Wrap-Up

The algebra of 3-dimensional Gray categories can be cumbersome, but the geometry is helpful in understanding what is going on.

Preprint available: Cartesian Gray-Monoidal Double Categories
https://www.ioc.ee/~ed/ (arXiv version coming soon)

References

[BN96] John Baez and Martin Neuchl. "Higher-Dimensional Algebra I: Braided Monoidal 2-Categories". In: Advances in Mathematics 121 (1996), pp. 196-244. arXiv: q-alg/9511013.
[Böh19] Gabriella Böhm. "The Gray Monoidal Product of Double Categories". In: Applied Categorical Structures 28 (2019). DOI: 10.1007/s10485-019-09587-5.
[Cra98] Sjoerd E. Crans. "Generalized Centers of Braided and Sylleptic Monoidal 2-Categories". In: Advances in Mathematics 136 (1998), pp. 183-223.
[DS97] Brian Day and Ross Street. "Monoidal Bicategories and Hopf Algebroids". In: Advances in Mathematics 129 (1997), pp. 99-157.
[Ehr62] Charles Ehresmann. "Catégorie des Foncteurs Types". In: Revista de la Unión Matemática Argentina. Vol. 20. 1962, pp. 194-209.
[GP99] Marco Grandis and Robert Paré. "Limits in Double Categories". In: Cahiers de Topologie et Géométrie Différentielle Catégoriques 40.3 (1999), pp. 162-222.
[Gra74] John W. Gray. Formal Category Theory: Adjointness for 2-Categories. Lecture Notes in Mathematics 391. Springer-Verlag, 1974.
[KV94] Mikhail Kapranov and Vladimir Voevodsky. "Braided Monoidal 2-Categories and Manin-Schechtman Higher Braid Groups". In: Journal of Pure and Applied Algebra 92.3 (1994), pp. 241-267.
[Mor22] Edward Morehouse. 2-Categories from a Gray Perspective. 2022. arXiv: 2203. 08783 [math. CT].
[Mye16] David Jaz Myers. String Diagrams for Double Categories and Equipments. 2016. arXiv: 1612.02762 [math. CT].

