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The What and Why of Functional Programming
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Imperative vs. Functional

In imperative programming languages (e.g. C, Python, Java) there
are,

terms: expressions that can be evaluated to a value
(e.g. ”hello world”, 3 + 4, fact (4))

statements: expressions that change the state of an executing program
(e.g. x++, for …, my_list .append(”unicorn”))

In functional programming languages, we program (primarily) using just
terms.
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Why Functional Programming?

Q) Why would we want to do that?

A) So we can reason about programs in a mathematical way.

This facilitates:

correctness
We can prove that our programs behave as intended.

optimization
A compiler can substitute terms in a program with other terms that
compute the same values more efficiently.

parallelism
A compiler can understand which parts of a program are independent,
and have those parts run concurrently.
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But is it Worth it?

Q) That sounds okay. But I’ve heard that functional programming is hard to
understand. Is that true?

A) Not necessarily, but it is a bit different from imperative programming.

If you’re used to the way we reason in math classes, it may feel very familiar.

Today we’ll highlight some of the main ideas and benefits of functional
programming through examples.

For concreteness, all examples are in the functional language Haskell1.

1http://haskell.org/

http://haskell.org/
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Computing with Terms
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Defining Terms

Functional programming is all about terms:
defining them, combining them and evaluating them.

Terms are like mathematical expressions.
They don’t change identity during the course of program execution.

So we give definitions rather than assignments:

x = ” foo ” ିି a s t r i n g
y = ” bar ” ିି another s t r i n g

z = x ⧺ y ିି concatenat ion from the standard l i b r a r y

Now z is ”foobar” forever. 2

2in this scope, anyway.
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Functions are Terms Too

Functional programming is also all about functions.

We can define a function by saying how it acts on its arguments using formal
parameters.

Here’s a boring but important function, called the identity function:

i d x = x

It does nothing at all to its argument.
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Multiple Arguments

Functions can take multiple arguments:

add x y = x + y ିି a d d i t i o n from the standard l i b r a r y

mul x y = x * y ିି l i kew ise , m u l t i p l i c a t i o n

We juxtapose the arguments after the function name without any
“( ି , ... , ି )” noise.

This is called currying.
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Applying Functions

To apply a function we follow its name by its arguments:

th ree = add 1 2
twelve = mul th ree ( add 2 2)

s t i l l _ t w e l v e = i d ( i d twelve )

Parentheses are used only for association.
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Partial Application

We can apply functions to fewer arguments than they expect.

This is called partial application.

It gives a new function that expects the remaining arguments:

double = mul 2

So the results of functions can themselves be functions.
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Function Literals

Functional languages let us write function literals.

The function we get by taking the variable 𝑥 as a formal parameter in the term 𝑡
is usually written as “λ𝑥 . 𝑡”. 3

But Haskell uses the notation “ \ x → t”.

id ’ = \ x → x ିି j u s t l i k e i d

For multiple arguments, we can write “ \ x y → t” as shorthand for
“ \ x → (\ y → t )”.

3from the original model of universal computation, Church’s ஛-calculus
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Higher-Order Functions

In addition to returning functions as results, functions may also take functions
as arguments. These are called higher-order functions.

An important higher-order functions is function composition:

compose f g = \ x → g ( f x )

it first applies f to its argument and then applies g to the result.

In math, this is usually written “𝑔 ∘ 𝑓”, which we can do in Haskell using infix
notation:

g ∘ f = compose f g



why fp? terms types interfaces

Recursive Functions

A recursive function may call itself in the process of computing its
result.

But we must be careful that the recursive calls don’t go on forever.

So the arguments to a recursive calls must be “smaller”. 4

Every mathematician’s favorite recursive function is the factorial:

f a c t 0 = 1
f a c t n = n * f a c t ( n ି 1)

This is an example of definition by pattern-matching.

4in some sense
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Example: Function Iteration

Using these ideas, let’s write a higher-order recursive function, iterate , that
takes a function and a number and composes the argument function with itself
the specified number of times.

We can pattern match on the number of iterations.

How do we iterate a function zero times?

i t e r a t e ₀ f 0 = ( ? )
i t e r a t e ₀ f n = ( ? )
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Example: Function Iteration

Using these ideas, let’s write a higher-order recursive function, iterate , that
takes a function and a number and composes the argument function with itself
the specified number of times.

We can pattern match on the number of iterations.

and how do we iterate a function one more time?

i t e r a t e ₁ f 0 = i d
i t e r a t e ₁ f n = ( ? ) ିି using i t e r a t e f ( n ି 1)
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Example: Function Iteration

Using these ideas, let’s write a higher-order recursive function, iterate , that
takes a function and a number and composes the argument function with itself
the specified number of times.

We can pattern match on the number of iterations.

That’s it, we’re done!

i t e r a t e f 0 = i d
i t e r a t e f n = compose f ( i t e r a t e f ( n ି 1 ) )
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Classifying Terms with Types
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Types and Terms

Many functional programming languages (including Haskell) are typed.

Types classify terms.

We write, “ t : A” to express that “ t is a term of type A”. 5

We’ve already met a few types, like numbers, strings and functions.

Haskell can figure out the types of many terms by itself.

But it’s helpful to write types out explicitly.

So from now on whenever we define a term we’ll write its type.

5idiosyncratically, Haskell uses “∷ ” for “ :”
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Function Types

The type of a function depends on the types of its argument and result.

We write the type of a function with argument type a and result type b as
“a → b”.

By currying and partial application, a function with two arguments of types a
and b, and result type c has type a → (b → c).

Conventionally, → associates to the right, so we can drop the parentheses and
just write “a → b → c”.
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Polymorphism

Some functions don’t examine their arguments at all.

They are called (parametrically) polymorphic.
(they are functions parameterized by a type).

Since id does nothing to its argument, it doesn’t care about its type.

So id has type:

id ∷ ∀ a . a → a

Since compose just sticks two functions together, it cares only that
the result of the first be the same type as the argument of the second.

So compose has type:

compose ∷∀ a b c . (a → b) → (b → c) → (a → c)

What is the type of iterate ?
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Algebraic Types

Most types in functional programming languages are inductively defined.

They are called algebraic types.

An algebraic type has a fixed set of constructors. 6

The constructors determine all the possible ways to create values (i.e. basic
terms) of the type.

Each constructor is like a function whose result type is the type in
question.

But this function doesn’t actually do anything!

It’s just a labeled container that stores its arguments.

Let’s look at some examples.

6Caution: these are not the same “constructors” you may know from object-oriented languages.
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Basic Types

The type of Booleans has just two constuctors:

data Bool ∷ * where
True ∷ Bool
False ∷ Bool

It also has just two values.

The type of natural numbers also has two constructors,
but one takes a natural number as argument:

data Nat ∷ * where
Zero ∷ Nat
Succ ∷ Nat → Nat

This is the inductive definition of the natural numbers.
It’s the reason why the principle of mathematical induction works.
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Type Constructors

Types can be parameterized by types too.

We build such types using type constructors.

These are like functions from types to types.

The Maybe type constructor represents the possibility of having “no value”:

data Maybe a ∷ * where
Nothing ∷ Maybe a ିି no a f o r you !
Just ∷ a → Maybe a ିି here , have an a

Maybe a is like a box that may or may not contain an a. (Surprise!)

With Maybe types, we don’t need null pointers7.

7Tony Hoare’s “billion dollar mistake”
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Lists

The List type constructor lets us build linked lists:

data L i s t a ∷ * where
N i l ∷ L i s t a ିି an empty l i s t
Cons ∷ a → L i s t a → L i s t a ିି a head and t a i l

Haskell has special notation for lists:

the type constructor List is written as “ [] ”,

the type List a is written as “ [a]”,

the (term) constructor Nil is written as “ [] ” and

the (term) constructor Cons is written infix as “ :”. 8

We may also write list literals like, “[1 , 2 , 3]” for
Cons 1 (Cons 2 (Cons 3 Nil)).

8which is why Haskell has to use “∷ ” for the typing relation
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Concatenating Lists

We can concatenate two lists over the same type into one with a function,
cat.

For example, cat [1 , 2] [3 , 4] should compute to [1 , 2 , 3 , 4].

How do we concatenate the empty list to a list?

c a t ₀ ∷ ∀ a . [ a ] → [ a ] → [ a ]
c a t ₀ [ ] ys = ( ? )
c a t ₀ ( x : xs ) ys = ( ? )
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Concatenating Lists

We can concatenate two lists over the same type into one with a function,
cat.

For example, cat [1 , 2] [3 , 4] should compute to [1 , 2 , 3 , 4].

and how do we concatenate a longer list to a list?

c a t ₁ ∷ ∀ a . [ a ] → [ a ] → [ a ]
c a t ₁ [ ] ys = ys
c a t ₁ ( x : xs ) ys = ( ? ) ିି using cat xs ys
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Concatenating Lists

We can concatenate two lists over the same type into one with a function,
cat.

For example, cat [1 , 2] [3 , 4] should compute to [1 , 2 , 3 , 4].

That’s it, we’re done!

cat ∷ ∀ a . [ a ] → [ a ] → [ a ]
ca t [ ] ys = ys
cat ( x : xs ) ys = x : ( ca t xs ys )

A Haskell string is just a list of characters,
and the “⧺” operator is just cat written infix.
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Mapping over Lists

We can map a function over the elements of a list with a higher-order function,
map.

For example, map even [1 , 2 , 3] should compute to [False , True , False].

How do we map a function over the empty list?

map₀ ∷ ∀ a b . ( a → b ) → [ a ] → [ b ]
map₀ f [ ] = ( ? )
map₀ f ( x : xs ) = ( ? )
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Mapping over Lists

We can map a function over the elements of a list with a higher-order function,
map.

For example, map even [1 , 2 , 3] should compute to [False , True , False].

and how do we map a function over a longer list?

map₁ ∷ ∀ a b . ( a → b ) → [ a ] → [ b ]
map₁ f [ ] = [ ]
map₁ f ( x : xs ) = ( ? ) ିି using map f xs
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Mapping over Lists

We can map a function over the elements of a list with a higher-order function,
map.

For example, map even [1 , 2 , 3] should compute to [False , True , False].

That’s it, we’re done!

map ∷ ∀ a b . ( a → b ) → [ a ] → [ b ]
map f [ ] = [ ]
map f ( x : xs ) = ( f x ) : (map f xs )

In imperative languages, this is usually done with a for loop.

Note that map is parallelizable: the function can be applied to each list element
independently.
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Abstracting Types using Interfaces



why fp? terms types interfaces

Type Classes
When we program we often want to take an abstract approach:
we care more about behavior than about structure.

In object-oriented programming we do this using interfaces:
collections of methods that a type must implement.

In functional programming, interfaces are called type classes.

For example, the Show class provides string representations for terms:
c lass Show ( a ∷ * ) where

show ∷ a → S t r i n g

To implement an interface, we declare a type to be an instance of the class and
define the promised functionality:
i ns tance Show Bool where

show ∷ Bool → S t r i n g
show True = ”True”
show False = ” False ”
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Using Type Classes

Type classes let us write functions that work with any type that’s in the
class.

This is sometimes called ad-hoc polymorphism
(in contrast to parametric polymorphism).

We express the dependence on class membership using constraints:

speak_up ∷ Show a ⇒ a → S t r i n g
speak_up x =

”Hi , I ’m ” ⧺ ( show x ) ⧺ ” . Pleased to meet you ! ”

speak_up has type a → String under the constraint that type a is an instance of
class Show.

That’s how we know it’s safe to call function show on x.
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Algebraic Type Classes

There are type classes for many common programming tasks, like:

serialization (Show),

deserialization (Read),

equality testing (Eq),

linear order testing (Ord),

arithmetic operations (Num), etc.

And you’re free to define your own.

But some of the most powerful abstractions in functional programming come
from a field of math called algebra.
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Monoids
Intuitively, monoids are structures that let us combine multiple things together
where the order of combining doesn’t matter. 9

Formally, a monoid is a set together with a binary combining operation, − ∙ −,
and element, ε, that satisfies the monoid laws,

(associative law) the order of combining doesn’t matter:

(𝑎 ∙ 𝑏) ∙ 𝑐 = 𝑎 ∙ (𝑏 ∙ 𝑐)

(unit law) ε is “neutral” for combining:

ε ∙ 𝑎 = 𝑎 = 𝑎 ∙ ε

For example, numbers are monoids under both + and ×.
What are the respective units?

9But the order of the things being combined may well matter!
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The Monoid Type Class
There is a Monoid type class that lets us do combining in a very general
way.

For example, lists are monoids.

What should be the combining operation for lists?

[1 , 2] ∙ [3 , 4] = (?)
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The Monoid Type Class
There is a Monoid type class that lets us do combining in a very general
way.

For example, lists are monoids.

What should be the combining operation for lists?

[1 , 2] ∙ [3 , 4] = [1 , 2 , 3 , 4] = [1 , 2] (?) [3 , 4]
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The Monoid Type Class
There is a Monoid type class that lets us do combining in a very general
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The Monoid Type Class
There is a Monoid type class that lets us do combining in a very general
way.

For example, lists are monoids.

What should be the combining operation for lists?

[1 , 2] ∙ [3 , 4] = [1 , 2 , 3 , 4] = [1 , 2] ⧺ [3 , 4]

The combining operation is concatenation.

What should be the unit?
[] ∙ [1 , 2 , 3] = [1 , 2 , 3] = [1 , 2 , 3] ∙ []

The unit is the empty list.

Since ⧺ is a monoid operation on lists, the compiler can safely optimize concate-
nations as long as it obeys the monoid laws.
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Functors
Another powerful abstraction is the idea of a functor.

Functors let us to apply type constructors to functions as well as to
types.

c lass Functor ( f ∷ * → * ) where
fmap ∷ ∀ a b . ( a → b ) → f a → f b

The higher-order function fmap, “lifts” a function into a type constructor.

For a type constructor to be a functor, it must obey the functor laws,

(identity law) fmap preserves identity:

fmap id = id

(composition law) fmap preserves composition:

fmap (g ∘ f ) = fmap g ∘ fmap f
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Functor Instances

We’ve already met two functors: Maybe and List .

We’ve also met the fmap instance for List .

Can you guess what it is based on its type?

i ns tance Functor [ ] where
fmap ∷ ∀ a b . ( a → b ) → [ a ] → [ b ]
fmap = ( ? )
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Functor Instances

We’ve already met two functors: Maybe and List .

We’ve also met the fmap instance for List .

That’s right, it’s map!

i ns tance Functor [ ] where
fmap ∷ ∀ a b . ( a → b ) → [ a ] → [ b ]
fmap = map

But in order to prove it, we must check the functor laws:

map id = id and map (g ∘ f ) = map g ∘map f

This is not too difficult.
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List Functoriality
..

map id []
= [definition map]

[]
= [definition id]

id []

map id (x : xs)
= [definition map]

id x : map id xs
= [IH: map id xs = id xs]

id x : id xs
= [definition id]

x : xs
= [definition id]

id (x : xs)

map (g ∘ f ) []
= [definition map]

[]
= [definition map]

map g []
= [definition map]

map g (map f [])
= [definition ∘]

(map g ∘map f) []

map (g ∘ f ) (x : xs)
= [definition map]

(g ∘ f ) x : map (g ∘ f ) xs
= [IH: map (g ∘ f ) xs = (map g ∘map f) xs]

(g ∘ f ) x : (map g ∘map f) xs
= [definition ∘]

g ( f x) : map g (map f xs)
= [definition map]

map g (f x : map f xs)
= [definition map]

map g (map f (x : xs))
= [definition ∘]

(map g ∘map f) (x : xs)
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Functors and Functions

As mentioned, Maybe is also a functor:

i ns tance Functor Maybe where
fmap ∷ ∀ a b . ( a → b ) → Maybe a → Maybe b
fmap f Nothing = Nothing
fmap f ( Just x ) = Just ( f x )

A common scenario is to have a function inside a functor,
e.g. maybe_f ∷ Maybe (a →b),

and an argument inside the same functor,
e.g. maybe_x ∷Maybe a.

We want to somehow “apply” the function to the argument to get a result of type
Maybe b.

But normal function application cannot do this.

We need to somehow turn the Maybe (a →b) into Maybe a →Maybe b.
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Applicative Functors

This is the role of applicative functors: they let us apply functions within
functors10:

c lass Functor f ⇒ A p p l i c a t i v e ( f ∷ * → * ) where
pure ∷ ∀ a . a → f a
( ⊛ ) ∷ ∀ a b . f ( a → b ) → f a → f b

Now we can declare the Maybe functor applicative:

i ns tance A p p l i c a t i v e Maybe where
pure ∷ ∀ a . a → Maybe a
pure = Just

( ⊛ ) ∷ ∀ a b . Maybe ( a → b ) → Maybe a → Maybe b
Nothing ⊛ maybe_x = Nothing
Just f ⊛ maybe_x = fmap f maybe_x

How could we make List applicative? (can you think of another way?)

10There are laws here as well. In particular, compose pure (⊛) =fmap.
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Programming with Algebra

Programming with algebraic interfaces lets us work at a high level of
abstraction, and lets compilers make optimizations based on mathematical
properties of programs.

For example, by knowing that List is a functor, a compiler can combine multiple
map applications into one (fusion).

Monoid, Functor and Applicative are just a few of many algebraic type classes
that can be used to write elegant and expressive functional programs.
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