Fox-cartesian structure for Gray-monoidal double categories

Edward Morehouse

Applied Category Theory 2023

Overview

Gray [Gra74] defined a monoidal product for 2-categories that is left adjoint to the internal hom,

$$
-\otimes-: 2 \mathrm{CAT} \times 2 \mathrm{CAT} \rightarrow 2 \mathrm{CAT}
$$

and used it to give an algebraic presentation of the 3-dimensional structure of 2 -categories and their morphisms.

Overview

Gray [Gra74] defined a monoidal product for 2-categories that is left adjoint to the internal hom,

$$
-\otimes-: 2 \mathrm{CAT} \times 2 \mathrm{CAT} \rightarrow 2 \mathrm{CAT}
$$

and used it to give an algebraic presentation of the 3-dimensional structure of 2 -categories and their morphisms.

Böhm [Böh19] defined a Gray-monoidal product functor for double categories,

$$
-\otimes-: \text { DBLCAT } \times \text { DBLCAT } \rightarrow \text { DBLCAT }
$$

and used it to define their Gray-monoidal structure.

Overview

Gray [Gra74] defined a monoidal product for 2-categories that is left adjoint to the internal hom,

$$
-\otimes-: 2 \mathrm{CAT} \times 2 \mathrm{CAT} \rightarrow 2 \mathrm{CAT}
$$

and used it to give an algebraic presentation of the 3 -dimensional structure of 2 -categories and their morphisms.

Böhm [Böh19] defined a Gray-monoidal product functor for double categories,

$$
-\otimes-: \text { DBLCAT } \times \text { DBLCAT } \rightarrow \text { DBLCAT }
$$

and used it to define their Gray-monoidal structure.

Fox [Fox76] characterized cartesian structure for symmetric monoidal 1-categories in terms of a natural duplication-deletion comonoid.

Overview

Gray [Gra74] defined a monoidal product for 2-categories that is left adjoint to the internal hom,

$$
-\otimes-: 2 \mathrm{CAT} \times 2 \mathrm{CAT} \rightarrow 2 \mathrm{CAT}
$$

and used it to give an algebraic presentation of the 3 -dimensional structure of 2 -categories and their morphisms.

Böhm [Böh19] defined a Gray-monoidal product functor for double categories,

$$
-\otimes-: \text { DBLCAT } \times \text { DBLCAT } \rightarrow \text { DBLCAT }
$$

and used it to define their Gray-monoidal structure.

Fox [Fox76] characterized cartesian structure for symmetric monoidal 1-categories in terms of a natural duplication-deletion comonoid.

Here we adapt Fox-cartesian structure to the setting of Gray-monoidal double categories, and describe it's theory in the graphical language of surface diagrams.

Locally Cubical Gray Categories

Double Categories and their Morphisms

We will need some structures from the theory of double categories:

- (preunitary weak) double categories,
- (strict and doubly-lax) functors of these,
- (horizontal and vertical) transformations of these,
- (cubical) modifications of these,

Double Categories and their Morphisms

We will need some structures from the theory of double categories:

- (preunitary weak) double categories,
- (strict and doubly-lax) functors of these,
- (horizontal and vertical) transformations of these,
- (cubical) modifications of these,

You may already know these from Dorette's tutorial.

Double Categories and their Morphisms

We will need some structures from the theory of double categories:

- (preunitary weak) double categories,
- (strict and doubly-lax) functors of these,
- (horizontal and vertical) transformations of these,
- (cubical) modifications of these,

You may already know these from Dorette's tutorial.

We can also understand them in terms of a locally cubical Gray category.

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has

0 -cells, A,

A

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has
0 -cells, A, B,
1 -cells, $f: \mathrm{A} \rightarrow \mathrm{B}$,

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has
0 -cells, A, B, 1-cells, $f, f^{\prime}: \mathrm{A} \rightarrow \mathrm{B}$, vertical 2 -cells, $\alpha: f \rightarrow f^{\prime}$,

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has
0 -cells, A, B,
1-cells, $f, f^{\prime}, g: \mathrm{A} \rightarrow \mathrm{B}$, vertical 2-cells, $\alpha: f \rightarrow f^{\prime}$,
horizontal 2-cells, $\gamma: f \rightarrow g$,

Locally Cubical Gray Categories - n-cells

A locally cubical Gray category \mathbb{C} has
0 -cells, A, B, 1-cells, $f, f^{\prime}, g, g^{\prime}: \mathrm{A} \rightarrow \mathrm{B}$, vertical 2-cells, $\alpha: f \rightarrow f^{\prime}, \beta: g \rightarrow g^{\prime}$, horizontal 2-cells, $\gamma: f \rightarrow g, \delta: f^{\prime} \rightarrow g^{\prime}$, 3-cells, $\varphi:{ }_{\alpha}^{\gamma} \diamond_{\delta}^{\beta}$.

Locally Cubical Gray Categories - local composition

Each ordered pair of 0 -cells determines a hom double category.

We represent their cells using string diagrams [Mye16] embedded in surfaces.

Locally Cubical Gray Categories - principal composition

For $m, n \in \mathbb{N}$ with $m+n \leq 2$,
composing an $(m+1)$-cell with 0 -cell boundary $\mathrm{A} \rightarrow \mathrm{B}$ with an $(n+1)$-cell with 0 -cell boundary $\mathrm{B} \rightarrow \mathrm{C}$ yields an $(m+n+1)$-cell with 0 -cell boundary $\mathrm{A} \rightarrow \mathrm{C}$.

Locally Cubical Gray Categories - principal composition

For $m, n \in \mathbb{N}$ with $m+n \leq 2$,
composing an $(m+1)$-cell with 0 -cell boundary $\mathrm{A} \rightarrow \mathrm{B}$ with an $(n+1)$-cell with 0 -cell boundary $\mathrm{B} \rightarrow \mathrm{C}$ yields an $(m+n+1)$-cell with 0 -cell boundary $\mathrm{A} \rightarrow \mathrm{C}$.

We read off the boundaries of composite cells from the projection string diagram of a surface diagram.

Whiskerings

When $m=0$ or $n=0$ the principal composition is called whiskering $(-\circledast-)$.

Whiskerings

When $m=0$ or $n=0$ the principal composition is called whiskering $(-\circledast-)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

Interchangers

When $m=n=1$ the principal composition is called interchange $\left(\chi_{(-,-)}\right)$.

This orientation for homogeneous interchangers is called "oplax", and its opposite "lax".

Principal Composition Laws

Principal composition is strictly unital and associative, and compatible with local composition in hom double categories.

So long as the dimension is "in range" we can "read off" laws from surface diagrams.
E.g.

$$
X_{(\alpha \circledast b, \gamma)}=X_{(\alpha, b \circledast \gamma)}
$$

Principal Composition Laws

Principal composition is strictly unital and associative, and compatible with local composition in hom double categories.

So long as the dimension is "in range" we can "read off" laws from surface diagrams. E.g.

$$
(\varphi \odot \psi) \circledast b \quad=\quad(\varphi \circledast b) \odot(\psi \circledast b)
$$

Principal Composition Laws

Principal composition is strictly unital and associative, and compatible with local composition in hom double categories.

So long as the dimension is "in range" we can "read off" laws from surface diagrams.
E.g.

$$
X_{\left(\alpha, \beta \cdot \beta^{\prime}\right)}=\left(X_{(\alpha, \beta)} \cdot \mathrm{U}\left(f^{\prime} \circledast \beta^{\prime}\right)\right) \odot\left(\mathrm{U}(f \circledast \beta) \cdot X_{\left(\alpha, \beta^{\prime}\right)}\right)
$$

Principal Composition Laws

We don't get a structure by composing a 2 -cell with a 3 -cell because there are no 4 -cells.

Principal Composition Laws

We don't get a structure by composing a 2 -cell with a 3 -cell because there are no 4 -cells.

Instead we get the property of a naturality equation.
We can read these off of diagrams by perturbing them away from critical points [Mor22].

Locally Cubical Gray Categories of Interest

Proposition

There is a locally cubical Gray category where
0 -cells are double categories,
1 -cells are strict functors,
vertical 2-cells are (lax and/or oplax) vertical transformations,
horizontal 2 -cells are (lax and/or oplax) horizontal transformations, 3 -cells are cubical modifications.

Locally Cubical Gray Categories of Interest

Proposition

There is a locally cubical Gray category where
0 -cells are double categories,
1 -cells are strict functors,
vertical 2-cells are (lax and/or oplax) vertical transformations,
horizontal 2 -cells are (lax and/or oplax) horizontal transformations, 3 -cells are cubical modifications.

Proposition

A (locally globular) Gray category is a locally cubical Gray category with trivial horizontal 2-cells.

Symmetric Gray-Monoidal Double Categries

Gray-Monoidal Double Categories

(The loop space of) a one-object locally cubical Gray category is a Gray-monoidal double category.

Gray-Monoidal Double Categories

(The loop space of) a one-object locally cubical Gray category is a Gray-monoidal double category.

This is essentially Böhm's "double category analogue of Gray monoids" obtained from the Gray monoidal product functor for double categories $-\otimes-$: DblCat \times DblCat \rightarrow DblCat. [Böh19]

Gray-Monoidal Double Categories

(The loop space of) a one-object locally cubical Gray category is a Gray-monoidal double category.

This is essentially Böhm's "double category analogue of Gray monoids" obtained from the Gray monoidal product functor for double categories $-\otimes-$: DblCat \times DblCat \rightarrow DblCat. [Böh19]

Generating $(m+n)$-cells of $\mathbb{C} \otimes \mathbb{D}$ are ordered pairs of an m-cell of \mathbb{C} and an n-cell of \mathbb{D}.

Gray-Monoidal Double Categories

(The loop space of) a one-object locally cubical Gray category is a Gray-monoidal double category.

This is essentially Böhm's "double category analogue of Gray monoids" obtained from the Gray monoidal product functor for double categories $-\otimes-$: DblCat \times DblCat \rightarrow DblCat. [Böh19]

Generating $(m+n)$-cells of $\mathbb{C} \otimes \mathbb{D}$ are ordered pairs of an m-cell of \mathbb{C} and an n-cell of \mathbb{D}. Slogan: $-\times-$ is dimension-sup'ing, $-\otimes-$ is dimension-summing.

Gray-Monoidal Double Categories

(The loop space of) a one-object locally cubical Gray category is a Gray-monoidal double category.

This is essentially Böhm's "double category analogue of Gray monoids" obtained from the Gray monoidal product functor for double categories $-\otimes-$: DblCat \times DblCat \rightarrow DblCat. [Böh19]

Generating $(m+n)$-cells of $\mathbb{C} \otimes \mathbb{D}$ are ordered pairs of an m-cell of \mathbb{C} and an n-cell of \mathbb{D}. Slogan: $-\times-$ is dimension-sup'ing, $-\otimes-$ is dimension-summing.

Double category \mathbb{C} is Gray-monoidal if functors $\otimes_{\mathbb{C}}: \mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C}$ and $\mathrm{I}_{\mathbb{C}}: \mathbb{1} \rightarrow \mathbb{C}$ form a monoid.

Braiding

The swap functor $\mathrm{S}_{(\mathbb{C}, \mathbb{D})}: \mathbb{C} \otimes \mathbb{D} \rightarrow \mathbb{D} \otimes \mathbb{C}$ reverses ordered pairs.

Braiding

The swap functor $S_{(\mathbb{C}, \mathbb{D})}: \mathbb{C} \otimes \mathbb{D} \rightarrow \mathbb{D} \otimes \mathbb{C}$ reverses ordered pairs.

Braiding

The swap functor $S_{(\mathbb{C}, \mathbb{D})}: \mathbb{C} \otimes \mathbb{D} \rightarrow \mathbb{D} \otimes \mathbb{C}$ reverses ordered pairs.

For \mathbb{C} a Gray-monoidal double category with invertible interchangers, a braiding is a vertical pseudo transformation $\sigma:(\mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C})\left(\otimes_{\mathbb{C}} \rightarrow S_{(\mathbb{C}, \mathbb{C})} \cdot \otimes_{\mathbb{C}}\right)$

Braiding

The swap functor $S_{(\mathbb{C}, \mathbb{D})}: \mathbb{C} \otimes \mathbb{D} \rightarrow \mathbb{D} \otimes \mathbb{C}$ reverses ordered pairs.

For \mathbb{C} a Gray-monoidal double category with invertible interchangers, a braiding is a vertical pseudo transformation $\sigma:(\mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C})\left(\otimes_{\mathbb{C}} \rightarrow S_{(\mathbb{C}, \mathbb{C})} \cdot \otimes_{\mathbb{C}}\right)$ that's coherent for monoidal composition [KV94; Cra98]

Braiding

The swap functor $S_{(\mathbb{C}, \mathbb{D})}: \mathbb{C} \otimes \mathbb{D} \rightarrow \mathbb{D} \otimes \mathbb{C}$ reverses ordered pairs.

For \mathbb{C} a Gray-monoidal double category with invertible interchangers, a braiding is a vertical pseudo transformation $\sigma:(\mathbb{C} \otimes \mathbb{C} \rightarrow \mathbb{C})\left(\otimes_{\mathbb{C}} \rightarrow S_{(\mathbb{C}, \mathbb{C})} \cdot \otimes_{\mathbb{C}}\right)$ that's coherent for monoidal composition [KV94; Cra98] and Yang-Baxterators [BN96].

Braiding

Braiding

Why do we need invertible interchangers? Consider

Braiding

Why do we need invertible interchangers? Consider

representing the relation

Syllepsis

A syllepsis for a braided Gray-monoidal double category \mathbb{C} is an invertible globular modification $v:\left(\otimes_{\mathbb{C}} \rightarrow \otimes_{\mathbb{C}}\right)\left(\operatorname{id}\left(\otimes_{\mathbb{C}}\right) \rightarrow \sigma \cdot(\mathrm{S} \cdot \sigma \sigma)\right)$ relating the unbraiding to a pair of consecutive braidings

Syllepsis

A syllepsis for a braided Gray-monoidal double category \mathbb{C} is an invertible globular modification $v:\left(\otimes_{\mathbb{C}} \rightarrow \otimes_{\mathbb{C}}\right)\left(\operatorname{id}\left(\otimes_{\mathbb{C}}\right) \rightarrow \sigma \cdot(\mathrm{S} \cdot \sigma \sigma)\right)$ relating the unbraiding to a pair of consecutive braidings

that is coherent for monoidal composition [DS97]

Syllepsis

A syllepsis for a braided Gray-monoidal double category \mathbb{C} is an invertible globular modification $v:\left(\otimes_{\mathbb{C}} \rightarrow \otimes_{\mathbb{C}}\right)\left(\operatorname{id}\left(\otimes_{\mathbb{C}}\right) \rightarrow \sigma \cdot(\mathrm{S} \cdot \sigma \sigma)\right)$ relating the unbraiding to a pair of consecutive braidings

that is coherent for monoidal composition [DS97] and for Yang-Baxterators.

Syllepsis

A syllepsis for a braided Gray-monoidal double category \mathbb{C} is an invertible globular modification $v:\left(\otimes_{\mathbb{C}} \rightarrow \otimes_{\mathbb{C}}\right)\left(\operatorname{id}\left(\otimes_{\mathbb{C}}\right) \rightarrow \sigma \cdot(\mathrm{S} \cdot \sigma \sigma)\right)$ relating the unbraiding to a pair of consecutive braidings

that is coherent for monoidal composition [DS97] and for Yang-Baxterators. It is a symmetry if it is the unit of an adjoint equivalence.

Fox-Cartesian Structure

Gray Diagonal Functors

To permit duplication we need Gray diagonal functors:

Gray Diagonal Functors

To permit duplication we need Gray diagonal functors:

Gray Diagonal Functors

To permit duplication we need Gray diagonal functors:

which must be lax in both dimensions in order to collate composites of 1-cells:

Duplication Stucture

From this we define duplicator oplax transformations of unitary pseudo functors, with components:

Duplication Stucture

From this we define duplicator oplax transformations of unitary pseudo functors, with components:

Duplication Stucture

From this we define duplicator oplax transformations of unitary pseudo functors, with components:

whose naturality for squares ensures:

Duplication Stucture

together with globular modifications acting as coassociator.

Duplication Stucture

together with globular modifications acting as coassociator.

and cocommutor:

Duplication Stucture

Plus some coherences, e.g. $s(\mathrm{~A})=$

Deletion Stucture

We also define a deletor oplax transformation of strict functors, with components:

Deletion Stucture

We also define a deletor oplax transformation of strict functors, with components:

whose naturality for squares ensures:

Deletion Stucture

together with modifications acting as counitors:

Deletion Stucture

together with modifications acting as counitors:

Plus coherences.

Fox-cartesian Gray-monoidal double categories

We (tentatively) propose to call symmetric Gray-monoidal double categories with duplication and deletion structure (Fox-)cartesian.

Fox-cartesian Gray-monoidal double categories

We (tentatively) propose to call symmetric Gray-monoidal double categories with duplication and deletion structure (Fox-)cartesian.

Reasons for caution:

- uncertainty that we have found a basis for the right coherence set,

Fox-cartesian Gray-monoidal double categories

We (tentatively) propose to call symmetric Gray-monoidal double categories with duplication and deletion structure (Fox-)cartesian.

Reasons for caution:

- uncertainty that we have found a basis for the right coherence set,
- lack of a universal construction characterization.

Fox-cartesian Gray-monoidal double categories

We (tentatively) propose to call symmetric Gray-monoidal double categories with duplication and deletion structure (Fox-)cartesian.

Reasons for caution:

- uncertainty that we have found a basis for the right coherence set,
- lack of a universal construction characterization.

Read more:
Cartesian Gray-Monoidal Double Categories https://arxiv.org/abs/2302.07810

Fox-cartesian Gray-monoidal double categories

We (tentatively) propose to call symmetric Gray-monoidal double categories with duplication and deletion structure (Fox-)cartesian.

Reasons for caution:

- uncertainty that we have found a basis for the right coherence set,
- lack of a universal construction characterization.

Read more:
Cartesian Gray-Monoidal Double Categories
https://arxiv.org/abs/2302.07810

Thank you!

References

[BN96] John Baez and Martin Neuchl. "Higher-Dimensional Algebra I: Braided Monoidal 2-Categories". In: Advances in Mathematics 121 (1996), pp. 196-244. arXiv: q-alg/9511013.
[Böh19] Gabriella Böhm. "The Gray Monoidal Product of Double Categories". In: Applied Categorical Structures 28 (2019). arXiv: 1901.10707 [math.CT].
[Cra98] Sjoerd E. Crans. "Generalized Centers of Braided and Sylleptic Monoidal 2-Categories". In: Advances in Mathematics 136 (1998), pp. 183-223.
[DS97] Brian Day and Ross Street. "Monoidal Bicategories and Hopf Algebroids". In: Advances in Mathematics 129 (1997), pp. 99-157.
[Fox76] Thomas Fox. "Coalgebras and Cartesian Categories". In: Communications in Algebra 4.7 (1976). Doi: $10.1080 / 00927877608822127$.
[Gra74] John W. Gray. Formal Category Theory: Adjointness for 2-Categories. Lecture Notes in Mathematics 391. Springer-Verlag, 1974.
[KV94] Mikhail Kapranov and Vladimir Voevodsky. "2-Categories and Zamolodchikov Tetrahedra Equations". In: Proceedings of Symposia in Pure Mathematics 56.2 (1994), pp. 177-259.
[Mor22] Edward Morehouse. 2-Categories from a Gray Perspective. 2022. arXiv: 2203. 08783 [math.CT].
[Mye16] David Jaz Myers. String Diagrams for Double Categories and Equipments. 2016. arXiv: 1612.02762 [math.CT].

