
Fox-cartesian structure for
Gray-monoidal double categories

Edward Morehouse

Applied Category Theory 2023



Overview
Gray [Gra74] defined a monoidal product for 2-categories that is left adjoint to the internal hom,

− ⊗ − ∶ 2Cat × 2Cat → 2Cat

and used it to give an algebraic presentation of the 3-dimensional structure
of 2-categories and their morphisms.

Böhm [Böh19] defined a Gray-monoidal product functor for double categories,

− ⊗ − ∶ DblCat × DblCat → DblCat

and used it to define their Gray-monoidal structure.

Fox [Fox76] characterized cartesian structure for symmetric monoidal 1-categories
in terms of a natural duplication–deletion comonoid.

Here we adapt Fox-cartesian structure to the setting of Gray-monoidal double categories,
and describe it’s theory in the graphical language of surface diagrams.
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Locally Cubical Gray Categories
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Double Categories and their Morphisms

We will need some structures from the theory of double categories:

▶ (preunitary weak) double categories,
▶ (strict and doubly-lax) functors of these,
▶ (horizontal and vertical) transformations of these,
▶ (cubical) modifications of these,

You may already know these from Dorette’s tutorial.

We can also understand them in terms of a locally cubical Gray category.
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Locally Cubical Gray Categories – 𝑛-cells

A locally cubical Gray category ℂ has

0-cells, A,

1-cells, 𝑓 ∶ A → B,
vertical 2-cells, α ∶ 𝑓 → 𝑓 ′,
horizontal 2-cells, γ ∶ 𝑓 ⇸ 𝑔,
3-cells, φ ∶ γ

α◇
β
δ .

B

𝑓α

α

𝑓

𝑓 ′

γ

γ

𝑓
𝑔α

β

γ

δ

φ

𝑓
𝑔

𝑓 ′

𝑔′

A
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Locally Cubical Gray Categories – local composition

Each ordered pair of 0-cells determines a hom double category.

B

γ

γ″

δ

δ″

α

α″β

β″

φ
ψ

σ
τ

A

We represent their cells using string diagrams [Mye16] embedded in surfaces.

6



Locally Cubical Gray Categories – principal composition

For 𝑚, 𝑛 ∈ ℕ with 𝑚 + 𝑛 ≤ 2,
composing an (𝑚 + 1)-cell with 0-cell boundary A → B
with an (𝑛 + 1)-cell with 0-cell boundary B → C
yields an (𝑚 + 𝑛 + 1)-cell with 0-cell boundary A → C.

We read off the boundaries of composite cells
from the projection string diagram of a surface diagram.

7



Locally Cubical Gray Categories – principal composition

For 𝑚, 𝑛 ∈ ℕ with 𝑚 + 𝑛 ≤ 2,
composing an (𝑚 + 1)-cell with 0-cell boundary A → B
with an (𝑛 + 1)-cell with 0-cell boundary B → C
yields an (𝑚 + 𝑛 + 1)-cell with 0-cell boundary A → C.

We read off the boundaries of composite cells
from the projection string diagram of a surface diagram.

7



Whiskerings

When 𝑚 = 0 or 𝑛 = 0 the principal composition is called whiskering (− ⊛ −).

B
α

β

γ

δ

φ
𝑓

𝑔
𝑓 ′

𝑔′

A𝑎A′ 𝑎 ⊛ α 𝑎 ⊛ β

𝑎 ⊛ γ

𝑎 ⊛ δ

𝑎 ⊛ φ
𝑎 ⊛ 𝑓

𝑎 ⊛ 𝑓 ′

𝑎 ⊛ 𝑔

𝑎 ⊛ 𝑔′
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Whiskerings

When 𝑚 = 0 or 𝑛 = 0 the principal composition is called whiskering (− ⊛ −).

B′𝑏B
α

β

γ

δ

φ
𝑓

𝑔
𝑓 ′

𝑔′

A α ⊛ 𝑏 β ⊛ 𝑏

γ ⊛ 𝑏

δ ⊛ 𝑏

φ ⊛ 𝑏
𝑓 ⊛ 𝑏

𝑓 ′ ⊛ 𝑏

𝑔 ⊛ 𝑏

𝑔′ ⊛ 𝑏
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Interchangers

When 𝑚 = 𝑛 = 1 the principal composition is called interchange (χ(−,−)).

C

δ

δ

𝑔
𝑔′B

α

α

𝑓

𝑓 ′
A

𝑓 ⊛ δ

𝑓 ′ ⊛ δ

α ⊛ 𝑔 α ⊛ 𝑔′
𝑓 ⊛ 𝑔

𝑓 ′ ⊛ 𝑔

𝑓 ⊛ 𝑔′

𝑓 ′ ⊛ 𝑔′
= χ(α,δ)

This orientation for homogeneous interchangers is called “oplax”, and its opposite “lax”.
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Principal Composition Laws
Principal composition is strictly unital and associative,
and compatible with local composition in hom double categories.

So long as the dimension is “in range” we can “read off” laws from surface diagrams.
E.g.

χ(α⊛𝑏,γ) = χ(α,𝑏⊛γ)

D
γ γ

C
𝑏B

α

α

A
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Principal Composition Laws
Principal composition is strictly unital and associative,
and compatible with local composition in hom double categories.

So long as the dimension is “in range” we can “read off” laws from surface diagrams.
E.g.

(φ ⊙ ψ) ⊛ 𝑏 = (φ ⊛ 𝑏) ⊙ (ψ ⊛ 𝑏)

C𝑏
Bα

α″

γ

γ′

δ

δ′

φ
ψA
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Principal Composition Laws
Principal composition is strictly unital and associative,
and compatible with local composition in hom double categories.

So long as the dimension is “in range” we can “read off” laws from surface diagrams.
E.g.

χ(α,β⋅β′) = (χ(α,β) ⋅ U(𝑓 ′ ⊛ β′)) ⊙ (U(𝑓 ⊛ β) ⋅ χ(α,β′))

C

β β
β′

β′

Bα

α

𝑓
𝑓 ′A
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Principal Composition Laws
We don’t get a structure by composing a 2-cell with a 3-cell because there are no 4-cells.

C
β

β′

δ

δ′

ψ
𝑔

𝑔′

B

α

α

𝑓
𝑓 ′A

Instead we get the property of a naturality equation.
We can read these off of diagrams by perturbing them away from critical points [Mor22].

𝑓 ′ ⊛ β

𝑓 ⊛ β′

𝑓 ⊛ δ

𝑓 ′ ⊛ δ

α ⊛ 𝑔

α ⊛ 𝑔′

𝑓 ⊛ ψ
≅

𝑓 ′ ⊛ β

𝑓 ⊛ β′

𝑓 ⊛ δ

𝑓 ′ ⊛ δ

α ⊛ 𝑔

α ⊛ 𝑔′𝑓 ′ ⊛ ψ
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Locally Cubical Gray Categories of Interest

Proposition
There is a locally cubical Gray category where
0-cells are double categories,
1-cells are strict functors,
vertical 2-cells are (lax and/or oplax) vertical transformations,
horizontal 2-cells are (lax and/or oplax) horizontal transformations,
3-cells are cubical modifications.

Proposition
A (locally globular) Gray category is a locally cubical Gray category
with trivial horizontal 2-cells.
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Symmetric Gray-Monoidal Double Categries
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Gray-Monoidal Double Categories
(The loop space of) a one-object locally cubical Gray category
is a Gray-monoidal double category.

This is essentially Böhm’s “double category analogue of Gray monoids”
obtained from the Gray monoidal product functor for double categories
− ⊗ − ∶ DblCat × DblCat → DblCat. [Böh19]

Generating (𝑚 + 𝑛)-cells of ℂ⊗𝔻 are ordered pairs of an 𝑚-cell of ℂ and an 𝑛-cell of 𝔻.
Slogan: − × − is dimension-sup’ing, − ⊗ − is dimension-summing.

Double category ℂ is Gray-monoidal if functors ⊗ ℂ ∶ ℂ⊗ ℂ → ℂ and Iℂ ∶ 𝟙 → ℂ
form a monoid.
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Braiding
The swap functor S(ℂ,𝔻) ∶ ℂ⊗𝔻 → 𝔻⊗ ℂ reverses ordered pairs.

M

M

𝑓
𝑓

S↦
𝑓

𝑓

M

M

For ℂ a Gray-monoidal double category with invertible interchangers, a braiding
is a vertical pseudo transformation σ ∶ (ℂ⊗ ℂ → ℂ) ( ⊗ ℂ → S(ℂ,ℂ) ⋅ ⊗ ℂ)

that’s coherent for monoidal composition [KV94; Cra98] and Yang-Baxterators [BN96].
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σ(X , B)
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𝑓

σ(X , A)
∶

X

X

A

B

𝑓
⇸

X

X

A

B
𝑓
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σ(A , B , C) = ∶

C

C

B

B

A

A

⇸

C

C

B

B

A

A
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Braiding

A

A

D

D

B

B

C

C

σ(A,C,D)−1

⇸

A

A

D

D

B

B

C

C

σ(B,C,D)−1

⇸

A

A

D

D

B

B

C

C

σ(A,B,C)
⇸

A

A

D

D

B

B

C

C

σ(A,B,D)
⇸

A

A

D

D

B

B

C

C
=

A

A

D

D

B

B

C

C

σ(A,B,D)
⇸

A

A

D

D

B

B

C

C

σ(A,B,C)
⇸

A

A

D

D

B

B

C

C

σ(B,C,D)−1

⇸

A

A

D

D

B

B

C

C

σ(A,C,D)−1

⇸

A

A

D

D

B

B

C

C
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Braiding
Why do we need invertible interchangers? Consider

M

N

N

M

representing the relation

B ⊗ N

N ⊗ A

M ⊗ X

Y ⊗ M

σ(A , X) σ(B , Y)
=

M ⊗ X

Y ⊗ M

B ⊗ N

N ⊗ A

σ(A , X) σ(B , Y)
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Syllepsis
A syllepsis for a braided Gray-monoidal double category ℂ
is an invertible globular modification υ ∶ ( ⊗ ℂ → ⊗ ℂ) (id( ⊗ ℂ) ⇸ σ ⋅ (S ⋅⋅ σ))
relating the unbraiding to a pair of consecutive braidings

υ(A , B) = ∶

A

A

B

B

⇸

A

A

B

B

that is coherent for monoidal composition [DS97] and for Yang-Baxterators.
It is a symmetry if it is the unit of an adjoint equivalence.
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A

A

B

B

C

C

υ(A,B)
⇸

A

A

B

B

C

C

σ(B,A,C)
⇸

A

A

B

B

C

C

σ(A,B,C)
⇸

A

A

B

B

C

C

υ(A,B)−1

⇸

A

A

B

B

C

C
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Fox-Cartesian Structure
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Gray Diagonal Functors
To permit duplication we need Gray diagonal functors:

𝑓 𝑔

M

N

α
A

C

B

D

∆′
ℂ↦

M

N

𝑓

𝑔
α

M

N

𝑓

𝑔
α

which must be lax in both dimensions in order to collate composites of 1-cells:

𝑓

𝑓𝑔
𝑔

𝑓

𝑓
𝑔

𝑔

,

M

M

N

N

M

M

N

N
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Duplication Stucture
From this we define duplicator oplax transformations of unitary pseudo functors, with components:

A

A A

,

M

M

M

,

𝑓

𝑓

𝑓

whose naturality for squares ensures:

𝑓
M

α

𝑔N
𝑔N

≅

𝑓 M

𝑔
N

α

𝑔
N
α
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Duplication Stucture
together with globular modifications acting as coassociator:

𝑠(A) = ∶

A

AA A A

⇸

A

A AA A

and cocommutor:

𝑐(A) = ∶

A

A A

⇸

A

AA

22
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A

A AA A

and cocommutor:

𝑐(A) = ∶

A

A A

⇸

A
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Duplication Stucture
Plus some coherences, e.g. 𝑠(A) =

A

AA A A

𝑐A⇸

A

AAA A

σ(A,δA)−1

⇸

A

AAA A

𝑐A⇸

A

AA AA

𝑠′A−1

⇸

A

AA AA

σ(δ′A,A)
⇸

A

AA AA

𝑐A−1

⇸

A

A AAA

𝑐A−1

⇸

A

A AA A
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Deletion Stucture
We also define a deletor oplax transformation of strict functors, with components:

A

,

M

,

𝑓

whose naturality for squares ensures:

𝑓
M

α

≅

𝑓
M
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Deletion Stucture
We also define a deletor oplax transformation of strict functors, with components:

A

,

M

,

𝑓

whose naturality for squares ensures:

𝑓
M

α

≅

𝑓
M

24



Deletion Stucture

together with modifications acting as counitors:

∶

A

A A

⇸

A

A

, ∶

A

A A

⇸

A

A

Plus coherences.
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Deletion Stucture

together with modifications acting as counitors:

∶

A

A A

⇸

A

A

, ∶

A

A A

⇸

A

A

Plus coherences.
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Fox-cartesian Gray-monoidal double categories
We (tentatively) propose to call symmetric Gray-monoidal double categories
with duplication and deletion structure (Fox-)cartesian.

Reasons for caution:
▶ uncertainty that we have found a basis for the right coherence set,
▶ lack of a universal construction characterization.

Read more:
Cartesian Gray-Monoidal Double Categories
https://arxiv.org/abs/2302.07810

Thank you!
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