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Motivation
The Univalence axiom of HoTT says that for types A and B in a universe 𝒰:

paths in 𝒰 from A to B
⏞⏞⏞⏞⏞(A =𝒰 B) ≃ (A ≃ B)⏟

functions A → B satisfying a predicate

Choosing the predicate for (coherent) equivalences yields the bidirectional paths of the identity type.

Different choices of function predicate correspond to different path structure on 𝒰.

Every path has an underlying function. We coerce along a path by applying that function.

Slogan: “all paths are coercible”.
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Set Up

We pursue this perspective on Univalence to develop a categorical model for type-universes that is
▶ directed,
▶ parametric on the predicate for paths.

We assume that the interpretations of:
▶ types are categories (directed and 1-dimensional),
▶ functions are functors (not necessarily fibration sections),
▶ function homotopies are natural transformations.

We do this using the structure of double categories.
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Double Categories
An double category is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in Cat.

It has:

AA

B

𝑓

A CMA

B

C

D

𝑓 𝑔

M

N

αα𝑓 𝑔

M

N

A

B

C

D

α

γ

𝑓 𝑔

𝑖 𝑗

M

O

= α ⋅ γ𝑓 ⋅ 𝑖 𝑔 ⋅ 𝑗

M

O

α β𝑓 ℎ

M

N

P

Q

= α ⊙ β𝑓 ℎ

M ⊙ P

N ⊙ Q

α β

γ δ

𝑓 ℎ

𝑖 𝑘

M

O

P

R

= (α ⋅ γ) ⊙ (β ⋅ δ) = (α ⊙ β) ⋅ (γ ⊙ δ)

A coherence theorem allows us to ignore and recover coherators [GP99].
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Globular Squares
A square with trivial boundary in some dimension is a globe.

A

B

A

B
𝑓 𝑔

U

U

α or α𝑓 𝑔
A

B

or α ∶ 𝑓 ⇸ 𝑔

The (pro)arrow globes of a double category form a sub-double category,
letting us use bicategory constructions [KS74] in double categories.

An arrow adjunction in a double category is formed by arrows 𝑓 ∶ A → B and 𝑔 ∶ B → A
and arrow globes η ∶ id(A) ⇸ 𝑓 ⋅ 𝑔 and ε ∶ 𝑔 ⋅ 𝑓 ⇸ id(B) such that:

𝑓

𝑔

𝑓

η

ε
≅ 𝑓𝑓 and

𝑔

𝑓

𝑔
η

ε
≅ 𝑔 𝑔

(The “− ≅ −” accounts for boundary coherators.)

5



Globular Squares
A square with trivial boundary in some dimension is a globe.

A

B

A

B
𝑓 𝑔

U

U

α or α𝑓 𝑔
A

B

or α ∶ 𝑓 ⇸ 𝑔

The (pro)arrow globes of a double category form a sub-double category,
letting us use bicategory constructions [KS74] in double categories.

An arrow adjunction in a double category is formed by arrows 𝑓 ∶ A → B and 𝑔 ∶ B → A
and arrow globes η ∶ id(A) ⇸ 𝑓 ⋅ 𝑔 and ε ∶ 𝑔 ⋅ 𝑓 ⇸ id(B) such that:

𝑓

𝑔

𝑓

η

ε
≅ 𝑓𝑓 and

𝑔

𝑓

𝑔
η

ε
≅ 𝑔 𝑔

(The “− ≅ −” accounts for boundary coherators.)

5



Globular Squares
A square with trivial boundary in some dimension is a globe.

A

B

A

B
𝑓 𝑔

U

U

α or α𝑓 𝑔
A

B

or α ∶ 𝑓 ⇸ 𝑔

The (pro)arrow globes of a double category form a sub-double category,
letting us use bicategory constructions [KS74] in double categories.

An arrow adjunction in a double category is formed by arrows 𝑓 ∶ A → B and 𝑔 ∶ B → A
and arrow globes η ∶ id(A) ⇸ 𝑓 ⋅ 𝑔 and ε ∶ 𝑔 ⋅ 𝑓 ⇸ id(B) such that:

𝑓

𝑔

𝑓

η

ε
≅ 𝑓𝑓 and

𝑔

𝑓

𝑔
η

ε
≅ 𝑔 𝑔

(The “− ≅ −” accounts for boundary coherators.)

5



Globular Squares
A square with trivial boundary in some dimension is a globe.

A

B

A

B
𝑓 𝑔

U

U

α or α𝑓 𝑔
A

B

or α ∶ 𝑓 ⇸ 𝑔

The (pro)arrow globes of a double category form a sub-double category,
letting us use bicategory constructions [KS74] in double categories.

An arrow adjunction in a double category is formed by arrows 𝑓 ∶ A → B and 𝑔 ∶ B → A
and arrow globes η ∶ id(A) ⇸ 𝑓 ⋅ 𝑔 and ε ∶ 𝑔 ⋅ 𝑓 ⇸ id(B) such that:

𝑓

𝑔

𝑓

η

ε
≅ 𝑓𝑓 and

𝑔

𝑓

𝑔
η

ε
≅ 𝑔 𝑔

(The “− ≅ −” accounts for boundary coherators.)
5



Companion Structure
In a double category, parallel arrow 𝑓 ∶ A → B and proarrow M ∶ A ⇸ B are companions [GP04]
if there are connection squares

A

B

B

B
𝑓 id

M

U

⋅𝑓⌟

⋅𝑓⌟𝑓

MA

B

and
A

A

A

B
id 𝑓

U

M

⌜𝑓 ⋅

⌜𝑓 ⋅

M

𝑓
A

B

satisfying the companion laws:

⋅𝑓⌟

⌜𝑓 ⋅

𝑓
M

𝑓
= 𝑓 𝑓 and ⌜𝑓 ⋅

⋅𝑓⌟

M

𝑓
M

≅

M

M
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Companionship Properties
When they exist, companion morphisms are unique up to canonical isoglobes.
So for arrow 𝑓 ∶ A → B we write “ ̂𝑓 ∶ A ⇸ B” for its companion proarrow.

Companionship respects morphism composition structure:

𝑓 ⋅ 𝑔 = ̂𝑓 ⊙ ̂𝑔 and îd(A) = U(A)

For arrow globe α ∶ 𝑓 ⇸ 𝑔 with companionable boundary, its companion proarrow globe α̂ ∶ ̂𝑔 → ̂𝑓 is:

α̂

̂𝑓

̂𝑔

≔ ⌜𝑓 ⋅ α ⋅𝑔⌟

̂𝑓

𝑓 𝑔
̂𝑔

Companionship also respects globe composition structure (contravariantly).
There are (0, 2)-full sub-double categories of companionable arrow- and proarrow globes,
which are equivalent as bicategories.
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Paths as Proarrows
Start with a 2-category whose 0-, 1-, and 2-cells interpret types, functions and function homotopies.

Select a (0, 2)-full sub-2-category of companionable structure,
whose arrows interpret functions corresponding to paths.

Form the free double category with connection squares for companionable arrows.

Directed paths in a universe A ↝ B are interpreted by proarrows ⟦A⟧ ⇸ ⟦B⟧.

Every proarrow is companionable, so every path is coercible.

If ⟦P⟧ = ̂𝑓 ∶ ⟦A⟧ ⇸ ⟦B⟧ then ⟦coe P⟧ = 𝑓 ∶ ⟦A⟧ → ⟦B⟧.

This gives us the following Univalence-like principle for types A and B in a universe 𝒰:

directed paths in 𝒰 from A to B
⏞(A ↝ B) ≃ (𝑓 ∶ A → B | comp 𝑓)⏟⏟⏟⏟⏟⏟⏟⏟⏟

companionable functions from A to B
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whose arrows interpret functions corresponding to paths.

Form the free double category with connection squares for companionable arrows.

Directed paths in a universe A ↝ B are interpreted by proarrows ⟦A⟧ ⇸ ⟦B⟧.

Every proarrow is companionable, so every path is coercible.

If ⟦P⟧ = ̂𝑓 ∶ ⟦A⟧ ⇸ ⟦B⟧ then ⟦coe P⟧ = 𝑓 ∶ ⟦A⟧ → ⟦B⟧.
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Kan Structure
Companion structure on a double category interprets a form of Kan structure for the universe.

For arbitrary path and composable companionable function:

A

B

D

D
𝑓 id

N

fill−𝑓

N

cmp−

and

A

A

C

D
id 𝑔

M

fill+

cmp+

M

𝑔

We have a canonical filler square and composite path [Shu08]:

⋅𝑓⌟𝑓

̂𝑓

N

N

and ⌜𝑔⋅

M

M

̂𝑔

𝑔
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Contravariant Paths
In order to fill the following “cubical horn” we need a path corresponding to the function 𝑔 “backwards”:

fill−𝑓 𝑔

N

cmp−

≅ ⋅𝑓⌟
⋅𝑔′⌟

𝑓

̂𝑓

N

N 𝑔′

𝑔
η

In double categories, conjoints are dual to companions by reflecting one dimension.

Companions, conjoints and adjunctions are linked: any two determine the third; in particular:

Given an arrow adjunction 𝑔′ ⊣ 𝑔, a proarrow is a companion to 𝑔′ iff it is a conjoint to 𝑔.
Thus we can define a conjoinable arrow as one with a companionable left adjoint.

If 𝑔 is conjoinable then we can fill the square.
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Path Structures on Universes

By varying which double category arrows are companionable we can model universes with various
path structures.

Some examples:
▶ if only identity arrows are companionable then the universe is path-discrete,
▶ if all arrows are companionable, then we have a directed path structure mirroring the function

structure,
▶ if arrows of an adjoint equivalence are companionable, then all paths are bi-directional

(because all companionable arrows then have companionable left adjoints).
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Companion Uniqueness
Theorem
If proarrows M0, M1 ∶ A ⇸ B are each companion to arrow 𝑓 ∶ A → B then M0 ≅ M1.

Proof.
For {𝑖, 𝑗} = {0, 1}, we have:

⌜𝑓 ⋅𝑗

⋅𝑓⌟𝑗

⋅𝑓⌟𝑖

⌜𝑓 ⋅𝑖

M𝑖

𝑓
M𝑗

𝑓
M𝑖

≅ ⌜𝑓 ⋅𝑖
⋅𝑓⌟𝑖

M𝑖

𝑓

M𝑖

≅

M𝑖

M𝑖

So the proarrow globes ⌜𝑓 ⋅1 ⊙ ⋅𝑓⌟0 ∶ M0 → M1 and ⌜𝑓 ⋅0 ⊙ ⋅𝑓⌟1 ∶ M1 → M0 form an isomorphism.
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Companion Compositionality
It is easily checked that the companion laws are satisfied with

⋅𝑓 ⋅ 𝑔⌟𝑓 ⋅ 𝑔

𝑓 ⋅ 𝑔

=
⋅𝑓⌟

⋅𝑔⌟
𝑓

̂𝑓

𝑔

̂𝑔

, ⌜𝑓 ⋅ 𝑔⋅

𝑓 ⋅ 𝑔

𝑓 ⋅ 𝑔 = ⌜𝑓 ⋅

⌜𝑔⋅

̂𝑓

𝑓

̂𝑔

𝑔

and

⋅id(A)⌟id(A)

̂id(A)

= id2(A) = ⌜id(A)⋅

̂id(A)

id(A)
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Companion Globe Compositionality

α̂ ⊙ β = ⌜𝑓 ⋅
⋅ℎ⌟

̂𝑓

α 𝑔 β

ℎ̂

≅
⌜𝑓 ⋅

⋅ℎ⌟

⋅𝑔⌟

⌜𝑔⋅

̂𝑓

α
̂𝑔

β

ℎ̂

≅
α̂

β̂

̂𝑓

̂𝑔

ℎ̂

= β̂ ⋅ α̂
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Conjoint Structure
In a double category, antiparallel arrow 𝑓 ∶ A → B and proarrow M ∶ B ⇸ A are conjoints
if there are coconnection squares

⋅𝑓⌝𝑓

M

A

B
and ⌞𝑓 ⋅

M

𝑓
A

B

satisfying the conjoint laws:

⋅𝑓⌝

⌞𝑓 ⋅

𝑓
M

𝑓
= 𝑓 𝑓 and ⌞𝑓 ⋅

⋅𝑓⌝

M
𝑓

M

≅

M

M
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Companions, Conjoints and Adjoints
Lemma
In a double category, if arrows 𝑓 ∶ A → B and 𝑔 ∶ B → A form an arrow adjunction 𝑓 ⊣ 𝑔 then any
proarrow is a companion to 𝑓 just in case it is a conjoint to 𝑔.

Proof.
Suppose that proarrow M ∶ A ⇸ B is a companion to 𝑓 . Define:

⋅𝑔⌝𝑔

M

≔
⌜𝑓 ⋅

𝑔

M

ε and ⌞𝑔⋅

M

𝑔 ≔
⋅𝑓⌟

M

𝑔
η

The reverse implication is dual.
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Verify that:

𝑔

M

𝑔

ε
⌜𝑓 ⋅

⋅𝑓⌟
η

≅

𝑔

𝑓

𝑔

ε

η
≅ 𝑔 𝑔

The reverse implication is dual.
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M

𝑔

M

⋅𝑓⌟
η

ε
⌜𝑓 ⋅

≅

M

𝑔

M

⋅𝑓⌟
η

ε
⌜𝑓 ⋅

≅

M

𝑓

M

⋅𝑓⌟⌜𝑓 ⋅
≅

M

M

The reverse implication is dual.
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M

𝑔

M

⋅𝑓⌟
η

ε
⌜𝑓 ⋅

≅

M

𝑔

M

⋅𝑓⌟
η

ε
⌜𝑓 ⋅

≅

M

𝑓

M

⋅𝑓⌟⌜𝑓 ⋅
≅

M

M
The reverse implication is dual.
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