A Double-Categorical Perspective on Type Universes

Edward Morehouse G. A. Kavvos Daniel R. Licata

Types 2019

The Univalence axiom of HoTT says that for types A and B in a universe \mathcal{U} :

paths in ${\mathcal U}$ from A to B

$$\overbrace{(A =_{\mathcal{U}} B)}^{\overbrace{(A = B)}} \simeq \underbrace{(A \simeq B)}_{\text{functions } A \rightarrow B \text{ satisfying a predicate}}$$

The Univalence axiom of HoTT says that for types A and B in a universe \mathcal{U} :

paths in \mathcal{U} from A to B $\overbrace{(A =_{\mathcal{U}} B)}^{\text{functions } A \rightarrow B} \simeq \underbrace{(A \simeq B)}_{\text{satisfying a predicate}}$

Choosing the predicate for (coherent) equivalences yields the bidirectional paths of the *identity type*.

The Univalence axiom of HoTT says that for types A and B in a universe \mathcal{U} :

paths in $\mathcal U$ from A to B $\overbrace{(A =_{\mathcal U} B)}^{} \simeq \underbrace{(A \simeq B)}_{\text{functions } A \to B \text{ satisfying a predicate}}$

Choosing the predicate for (coherent) equivalences yields the bidirectional paths of the *identity type*.

Different choices of function predicate correspond to different path structure on \mathcal{U} .

The Univalence axiom of HoTT says that for types A and B in a universe \mathcal{U} :

paths in $\mathcal U$ from A to B $\overbrace{(A =_{\mathcal U} B)}^{} \simeq \underbrace{(A \simeq B)}_{\text{functions } A \to B \text{ satisfying a predicate}}$

Choosing the predicate for (coherent) equivalences yields the bidirectional paths of the *identity type*.

Different choices of function predicate correspond to different path structure on \mathcal{U} .

Every path has an underlying function. We coerce along a path by applying that function.

Slogan: "all paths are coercible".

Set Up

We pursue this perspective on Univalence to develop a categorical model for type-universes that is

directed,

parametric on the predicate for paths.

Set Up

We pursue this perspective on Univalence to develop a categorical model for type-universes that is

directed,

parametric on the predicate for paths.

We assume that the interpretations of:

- types are categories (directed and 1-dimensional),
- functions are functors (not necessarily fibration sections),
- *function homotopies* are natural transformations.

Set Up

We pursue this perspective on Univalence to develop a categorical model for type-universes that is

directed,

parametric on the predicate for paths.

We assume that the interpretations of:

- types are categories (directed and 1-dimensional),
- functions are functors (not necessarily fibration sections),
- *function homotopies* are natural transformations.

We do this using the structure of double categories.

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in $\ensuremath{\mathrm{CAT}}$.

It has:

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in CAT.

It has:

0-dimensional objects:

А

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in CAT.

It has:

1-dimensional arrow (vertical) morphisms:

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in CAT.

It has:

1-dimensional proarrow (horizontal) morphisms:

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in CAT.

It has:

2-dimensional squares:

$$\begin{array}{ccc} A & \stackrel{M}{\longrightarrow} C \\ f & & & \\ B & \stackrel{M}{\longrightarrow} D \end{array}$$

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in CAT.

It has:

2-dimensional squares – which we can draw using dual diagrams [Mye07]:

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in CAT.

It has:

(strict) composition in the arrow dimension:

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in CAT.

It has:

(weak) composition in the proarrow dimension:

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

=

For experts, it is an internal category in CAT.

It has:

generalized associativity [DP93]:

$$(\alpha \cdot \gamma) \odot (\beta \cdot \delta) = (\alpha \odot \beta) \cdot (\gamma \odot \delta)$$

An *double category* is a 2-dimensional category of cubical (rather than globular) shape.

For experts, it is an internal category in CAT.

It has:

generalized associativity [DP93]:

A coherence theorem allows us to ignore and recover coherators [GP99].

Globular Squares A square with trivial boundary in some dimension is a *globe*.

$$\begin{array}{cccc} A \xrightarrow{U} & A & & A \\ f \swarrow & \alpha & \downarrow g & \text{ or } & f \xrightarrow{} @ & g & \text{ or } & \alpha : f \twoheadrightarrow g \\ B \xrightarrow{} & B & & B & & B \end{array}$$

Globular Squares

A square with trivial boundary in some dimension is a globe.

$$\begin{array}{cccc} A \xrightarrow{U} & A & & A \\ f \downarrow & \alpha & \downarrow g & \text{ or } & f \xrightarrow{} @ & g & \text{ or } & \alpha : f \twoheadrightarrow g \\ B \xrightarrow{} & B & & B & & B \end{array}$$

The (pro)arrow globes of a double category form a sub-double category, letting us use bicategory constructions [KS74] in double categories.

Globular Squares

A square with trivial boundary in some dimension is a globe.

$$\begin{array}{cccc} A \xrightarrow{U} & A & & A \\ f \downarrow & \alpha & \downarrow g & \text{ or } & f \xrightarrow{-\alpha} g & \text{ or } & \alpha : f \twoheadrightarrow g \\ B \xrightarrow{++} & B & & B \end{array}$$

The (pro)arrow globes of a double category form a sub-double category, letting us use bicategory constructions [KS74] in double categories.

An arrow adjunction in a double category is formed by arrows $f : A \to B$ and $g : B \to A$ and arrow globes $\eta : id(A) \nleftrightarrow f \cdot g$ and $\epsilon : g \cdot f \twoheadrightarrow id(B)$ such that:

Globular Squares

A square with trivial boundary in some dimension is a globe.

$$\begin{array}{cccc} A \xrightarrow{U} & A & & A \\ f \downarrow & \alpha & \downarrow g & \text{ or } & f \xrightarrow{-\alpha} g & \text{ or } & \alpha : f \nrightarrow g \\ B \xrightarrow{H} & B & & B \end{array}$$

The (pro)arrow globes of a double category form a sub-double category, letting us use bicategory constructions [KS74] in double categories.

An *arrow adjunction* in a double category is formed by arrows $f : A \to B$ and $g : B \to A$ and arrow globes $\eta : id(A) \Rightarrow f \cdot g$ and $\epsilon : g \cdot f \Rightarrow id(B)$ such that:

(The " $- \cong -$ " accounts for boundary coherators.)

Companion Structure

In a double category, parallel arrow $f : A \to B$ and proarrow $M : A \to B$ are *companions* [GP04] if there are *connection squares*

Companion Structure

In a double category, parallel arrow $f : A \to B$ and proarrow $M : A \Rightarrow B$ are *companions* [GP04] if there are *connection squares*

Companion Structure

In a double category, parallel arrow $f : A \to B$ and proarrow $M : A \to B$ are *companions* [GP04] if there are *connection squares*

satisfying the *companion laws*:

When they exist, companion morphisms are unique up to canonical isoglobes. So for arrow $f : A \to B$ we write " $\hat{f} : A \to B$ " for its companion proarrow.

When they exist, companion morphisms are unique up to canonical isoglobes. So for arrow $f : A \to B$ we write " $\hat{f} : A \to B$ " for its companion proarrow.

Companionship respects morphism composition structure:

$$\widehat{f \cdot g} = \widehat{f} \odot \widehat{g}$$
 and $\widehat{\mathrm{id}(\mathrm{A})} = \mathrm{U}(\mathrm{A})$

When they exist, companion morphisms are unique up to canonical isoglobes. So for arrow $f : A \to B$ we write " $\hat{f} : A \to B$ " for its companion proarrow.

Companionship respects morphism composition structure:

$$\widehat{f \cdot g} = \widehat{f} \odot \widehat{g}$$
 and $\widehat{id(A)} = U(A)$

For arrow globe $\alpha : f \nleftrightarrow g$ with companionable boundary, its *companion* proarrow globe $\widehat{\alpha} : \widehat{g} \to \widehat{f}$ is:

When they exist, companion morphisms are unique up to canonical isoglobes. So for arrow $f : A \to B$ we write " $\hat{f} : A \Rightarrow B$ " for its companion proarrow.

Companionship respects morphism composition structure:

$$\widehat{f \cdot g} = \widehat{f} \odot \widehat{g}$$
 and $\widehat{\operatorname{id}(A)} = \operatorname{U}(A)$

For arrow globe $\alpha : f \nleftrightarrow g$ with companionable boundary, its *companion* proarrow globe $\widehat{\alpha} : \widehat{g} \to \widehat{f}$ is:

Companionship also respects globe composition structure (contravariantly). There are (0,2)-full sub-double categories of companionable arrow- and proarrow globes, which are equivalent as bicategories.

Start with a 2-category whose 0-, 1-, and 2-cells interpret types, functions and function homotopies.

Start with a 2-category whose 0-, 1-, and 2-cells interpret types, functions and function homotopies.

Select a (0,2)-full sub-2-category of *companionable* structure, whose arrows interpret functions corresponding to paths.

Start with a 2-category whose 0-, 1-, and 2-cells interpret types, functions and function homotopies.

Select a (0,2)-full sub-2-category of *companionable* structure, whose arrows interpret functions corresponding to paths.

Form the free double category with connection squares for companionable arrows.

 $\mbox{Directed paths in a universe } A \thicksim B \mbox{ are interpreted by proarrows } [\![A]\!] \nrightarrow [\![B]\!].$

Start with a 2-category whose 0-, 1-, and 2-cells interpret types, functions and function homotopies.

Select a (0,2)-full sub-2-category of *companionable* structure, whose arrows interpret functions corresponding to paths.

Form the free double category with connection squares for companionable arrows.

 $\label{eq:constraint} \mbox{Directed paths in a universe } A \thicksim B \mbox{ are interpreted by proarrows } [\![A]\!] \twoheadrightarrow [\![B]\!].$

Every proarrow is companionable, so every path is coercible.

If $\llbracket P \rrbracket = \hat{f} : \llbracket A \rrbracket \twoheadrightarrow \llbracket B \rrbracket$ then $\llbracket \operatorname{coe} P \rrbracket = f : \llbracket A \rrbracket \to \llbracket B \rrbracket$.

Start with a 2-category whose 0-, 1-, and 2-cells interpret types, functions and function homotopies.

Select a (0,2)-full sub-2-category of *companionable* structure, whose arrows interpret functions corresponding to paths.

Form the free double category with connection squares for companionable arrows. Directed paths in a universe $A \sim B$ are interpreted by proarrows $[\![A]\!] \leftrightarrow [\![B]\!]$.

Every proarrow is companionable, so every path is coercible.

If
$$\llbracket P \rrbracket = \hat{f} : \llbracket A \rrbracket$$
 \Rightarrow $\llbracket B \rrbracket$ then $\llbracket \operatorname{coe} P \rrbracket = f : \llbracket A \rrbracket \Rightarrow$ $\llbracket B \rrbracket$.

This gives us the following Univalence-like principle for types A and B in a universe $\mathcal{U}\colon$

directed paths in ${\mathcal U}$ from A to B

$$\overbrace{(\mathbf{A} \leadsto \mathbf{B})} \simeq \underbrace{(f : \mathbf{A} \to \mathbf{B} \mid \operatorname{comp} f)}$$

companionable functions from ${\rm A}$ to ${\rm B}$

Kan Structure

Companion structure on a double category interprets a form of Kan structure for the universe.

For arbitrary path and composable companionable function:

Kan Structure

Companion structure on a double category interprets a form of Kan structure for the universe.

For arbitrary path and composable companionable function:

We have a canonical filler square and composite path [Shu08]:

Kan Structure

Companion structure on a double category interprets a form of Kan structure for the universe.

For arbitrary path and composable companionable function:

We have a canonical filler square and composite path [Shu08]:

In order to fill the following "cubical horn" we need a path corresponding to the function g "backwards":

In order to fill the following "cubical horn" we need a path corresponding to the function g "backwards":

In double categories, conjoints are dual to companions by reflecting one dimension.

In order to fill the following "cubical horn" we need a path corresponding to the function g "backwards":

In double categories, conjoints are dual to companions by reflecting one dimension.

Companions, conjoints and adjunctions are linked: any two determine the third; in particular:

Given an arrow adjunction $g' \dashv g$, a proarrow is a companion to g' iff it is a conjoint to g.

In order to fill the following "cubical horn" we need a path corresponding to the function g "backwards":

In double categories, conjoints are dual to companions by reflecting one dimension.

Companions, conjoints and adjunctions are linked: any two determine the third; in particular:

Given an arrow adjunction $g' \dashv g$, a proarrow is a companion to g' iff it is a conjoint to g.

Thus we can define a *conjoinable* arrow as one with a companionable left adjoint.

In order to fill the following "cubical horn" we need a path corresponding to the function g "backwards":

In double categories, conjoints are dual to companions by reflecting one dimension.

Companions, conjoints and adjunctions are linked: any two determine the third; in particular:

Given an arrow adjunction $g' \dashv g$, a proarrow is a companion to g' iff it is a conjoint to g.

Thus we can define a *conjoinable* arrow as one with a companionable left adjoint.

If g is conjoinable then we can fill the square.

Path Structures on Universes

By varying which double category arrows are companionable we can model universes with various path structures.

Path Structures on Universes

By varying which double category arrows are companionable we can model universes with various path structures.

Some examples:

- if only identity arrows are companionable then the universe is path-discrete,
- if all arrows are companionable, then we have a directed path structure mirroring the function structure,
- if arrows of an adjoint equivalence are companionable, then all paths are bi-directional (because all companionable arrows then have companionable left adjoints).

References

- Robert Dawson and Robert Pare. "General Associativity and General Composition for Double Categories". In: *Cahiers de Topologie et Géométrie Différentielle Catégoriques* 31.1 (1993), pp. 57–79.
 - Marco Grandis and Robert Pare. "Limits in Double Categories". In: *Cahiers de Topologie et Géométrie Différentielle Catégoriques* 40.3 (1999), pp. 162–222.
 - Marco Grandis and Robert Pare. "Adjoint for Double Categories". In: *Cahiers de Topologie et Géométrie Différentielle Catégoriques* 45.3 (2004), pp. 193–240.
 - Gregory M Kelly and Ross Street. "Review of the Elements of 2-Categories". In: *Lecture Notes in Mathematics* 420 (1974), pp. 75–103.
 - David Myers. "String Diagrams for Double Categories and Equipments". In: (2107). URL: https://arxiv.org/abs/1612.02762.
 - Michael Shulman. "Framed Bicategories and Monoidal Fibrations". In: *Theory and Application of Categories* 20.18 (2008), pp. 650–738. URL: https://arxiv.org/abs/0706.1286.

Bonus Slides

Companion Uniqueness

Theorem

If proarrows $M_0, M_1 : A \twoheadrightarrow B$ are each companion to arrow $f : A \to B$ then $M_0 \cong M_1$.

Proof.

For $\{i, j\} = \{0, 1\}$, we have:

So the proarrow globes $\lceil f_{\cdot 1} \odot \uparrow f_{ \lrcorner 0} : M_0 \to M_1$ and $\lceil f_{\cdot 0} \odot \uparrow f_{ \lrcorner 1} : M_1 \to M_0$ form an isomorphism. \Box

Companion Compositionality

It is easily checked that the companion laws are satisfied with

and

$$id(A) \xrightarrow{id(A)} = (id^{2}(A)) = (id(A)) \xrightarrow{id(A)} id(A)$$

Companion Globe Compositionality

Conjoint Structure

In a double category, antiparallel arrow $f : A \to B$ and proarrow $M : B \twoheadrightarrow A$ are *conjoints* if there are *coconnection squares*

satisfying the *conjoint laws*:

Lemma

In a double category, if arrows $f : A \to B$ and $g : B \to A$ form an arrow adjunction $f \dashv g$ then any proarrow is a companion to f just in case it is a conjoint to g.

Proof.

Suppose that proarrow $M : A \twoheadrightarrow B$ is a companion to f. Define:

Lemma

In a double category, if arrows $f : A \to B$ and $g : B \to A$ form an arrow adjunction $f \dashv g$ then any proarrow is a companion to f just in case it is a conjoint to g.

Proof.

Verify that:

Lemma

In a double category, if arrows $f : A \to B$ and $g : B \to A$ form an arrow adjunction $f \dashv g$ then any proarrow is a companion to f just in case it is a conjoint to g.

Proof.

And that:

Lemma

In a double category, if arrows $f : A \to B$ and $g : B \to A$ form an arrow adjunction $f \dashv g$ then any proarrow is a companion to f just in case it is a conjoint to g.

Proof.

And that:

The reverse implication is dual.