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Identity Types

In type theory, identity types classify paths between elements of a type.

Γ ⊢ A ∶ 𝒰 Γ ⊢ 𝑥 ∶ A Γ ⊢ 𝑦 ∶ A
Γ ⊢ 𝑥 =A 𝑦 ∶ 𝒰 = ↓

Identity types are inductively defined by a single generator, representing a trivial path:

Γ ⊢ A ∶ 𝒰 Γ ⊢ 𝑥 ∶ A
Γ ⊢ refl 𝑥 ∶ 𝑥 =A 𝑥 = +

Thus elements of an identity type form undirected (bidirected) paths.
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HoTT Universes
A universe is a type that classifies other types.

A HoTT universe becomes an ∞-groupoid under _ = _ by Voevodsky’s Univalence principle:

for types A and B in a universe 𝒰,

(A =𝒰 B) ≃ (A ≃ B)

where _ ≃ _ is the type of coherent equivalences:

A ≃ B ≔ Σ 𝑓 ∶ A → B . isequiv(𝑓)

A function can be a coherent equivalence in at most one way.

Paths between types have computational content because we can transport structure along a them:
Γ ⊢ 𝑝 ∶ A =𝒰 B Γ ⊢ 𝑥 ∶ A

Γ ⊢ tr(𝑝)(𝑥) ∶ B
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Path Types

Becuase HoTT’s identity types are inductively defined by a single generator,
Univalence is introduced as an axiom, breaking the computational interpretation.

In cubical type theories, identity types are not primitive, but defined in terms of path types.

Path types are types in a context containing a dimension variable.

These can be thought of as functions from a formal interval to a universe.

A path type in a universe relates the types at its two distinct endpoints.
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Directed Type Theory
In a directed type theory, a type should be a (higher-dimensional) category, rather than a groupoid.

Elements of a type may be related by directed paths.

A universe of directed types should be a category as well.

A directed univalence principle should say something like:

(A ↝𝒰 B) ≃ (Σ 𝑓 ∶ A → B . pathy(𝑓))

where pathy is a mere predicate on functions.

As in HoTT, each path has an underlying function.

We transport along a path by applying that function.

Slogan: “all paths are transportable”.
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Set Up

We pursue this perspective on univalence to develop a framework for categorical models
for type universes that is

▶ directed,
▶ parametric on the predicate for paths.

We assume that the interpretations of:
▶ types are categories (directed and 1-dimensional),
▶ functions are functors
▶ function homotopies are natural transformations.

We do this using double categories with connection structure.
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Double Categories, Axiomatically

A double category 𝔻 is a (weak) internal category in Cat.

𝔻0 𝔻1𝔻0 𝔻1

L

U

R

𝔻1 𝔻1

𝔻1 R×L 𝔻1

𝔻0

𝔻1

R L

π0 π1
− ⊙ −

𝔻1 𝔻1

𝔻0

𝔻0

U U

L R

id

𝔻1 R×L 𝔻1

𝔻1

𝔻1 𝔻1

𝔻0 𝔻0

π0 π1

L R

L R

− ⊙ −

U(LM) ⊙ M ≅ M ≅ M ⊙ U(RM) (M ⊙ N) ⊙ P ≅ M ⊙ (N ⊙ P)

satisfying the triangle and pentagon equations
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Double Categories, Axiomatically

A double category 𝔻 is a (weak) internal category in Cat.

and come equipped with unitor and associator natural isomorphisms
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Double Categories, Diagrammatically
A double category is a 2-dimensional category of cubical (rather than globular) shape.

It has:

AA

B

𝑓

A C
M

A

B

C

D

𝑓 𝑔

M

N

α𝑓 𝑔

M

N

α

A

B

C

D

𝑓 𝑔

𝑖 𝑗

M

O

α

γ

= 𝑓 ⋅ 𝑖 𝑔 ⋅ 𝑗

M

O

α ⋅ γ𝑓 ℎ

M

N

P

Q

α β = 𝑓 ℎ

M ⊙ P

N ⊙ Q

α ⊙ β𝑓 ℎ

𝑖 𝑘

M

O

P

R

α β

γ δ

= (α ⋅ γ) ⊙ (β ⋅ δ) = (α ⊙ β) ⋅ (γ ⊙ δ)

A coherence theorem allows us to ignore and recover coherators [GP99].
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Double Categories, Diagrammatically
A double category is a 2-dimensional category of cubical (rather than globular) shape.
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Double Categories, Diagrammatically
A double category is a 2-dimensional category of cubical (rather than globular) shape.

It has:

1-dimensional proarrow (horizontal) morphisms:

AA

B

𝑓

A C
M

A

B

C

D

𝑓 𝑔

M

N

α𝑓 𝑔

M

N

α

A

B

C

D

𝑓 𝑔

𝑖 𝑗

M

O

α

γ

= 𝑓 ⋅ 𝑖 𝑔 ⋅ 𝑗

M

O

α ⋅ γ𝑓 ℎ

M

N

P

Q

α β = 𝑓 ℎ

M ⊙ P

N ⊙ Q

α ⊙ β𝑓 ℎ

𝑖 𝑘

M

O

P

R

α β

γ δ

= (α ⋅ γ) ⊙ (β ⋅ δ) = (α ⊙ β) ⋅ (γ ⊙ δ)

A coherence theorem allows us to ignore and recover coherators [GP99].

8



Double Categories, Diagrammatically
A double category is a 2-dimensional category of cubical (rather than globular) shape.

It has:

2-dimensional squares:

AA

B

𝑓

A C
M

A

B

C

D

𝑓 𝑔

M

N

α

𝑓 𝑔

M

N

α

A

B

C

D

𝑓 𝑔

𝑖 𝑗

M

O

α

γ

= 𝑓 ⋅ 𝑖 𝑔 ⋅ 𝑗

M

O

α ⋅ γ𝑓 ℎ

M

N

P

Q

α β = 𝑓 ℎ

M ⊙ P

N ⊙ Q

α ⊙ β𝑓 ℎ

𝑖 𝑘

M

O

P

R

α β

γ δ

= (α ⋅ γ) ⊙ (β ⋅ δ) = (α ⊙ β) ⋅ (γ ⊙ δ)

A coherence theorem allows us to ignore and recover coherators [GP99].

8



Double Categories, Diagrammatically
A double category is a 2-dimensional category of cubical (rather than globular) shape.
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Double Categories, Diagrammatically
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Double Categories, Diagrammatically
A double category is a 2-dimensional category of cubical (rather than globular) shape.

It has:

(weak) composition in the proarrow dimension:
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P
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α β

γ δ
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A coherence theorem allows us to ignore and recover coherators [GP99].
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Double Categories, Diagrammatically
A double category is a 2-dimensional category of cubical (rather than globular) shape.

It has:
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Globular Squares
A square with trivial boundary in some dimension is a globe.

A

B

A

B
𝑓 𝑔

U

U

α or 𝑓 𝑔α
A

B
or α ∶ 𝑓 ⇸ 𝑔

The (pro)arrow globes of a double category form a sub-double category,
letting us use bicategory constructions [KS74] in double categories.

An arrow adjunction in a double category is formed by arrows 𝑓 ∶ A → B and 𝑔 ∶ B → A
and arrow globes η ∶ id(A) ⇸ 𝑓 ⋅ 𝑔 and ε ∶ 𝑔 ⋅ 𝑓 ⇸ id(B) such that:

𝑓

𝑔

𝑓

η

ε
≅ 𝑓𝑓 and

𝑔

𝑓

𝑔
η

ε
≅ 𝑔 𝑔

(The “− ≅ −” accounts for boundary coherators.)
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Cotabulators
A cotabulator [GP17] for a double category 𝔻 is a functor ⊥ ∶ 𝔻1 → 𝔻0 such that ⊥ ⊣ U.

For proarrow M ∶ A ⇸ B and object C there is a natural bijection between squares from M to the
identity proarrow on C and arrows from the cotabulator of M to C:

α ∶ 𝔻1 (M → U(C))
𝑑 ∶ 𝔻0 (⊥(M) → C)

The adjunction unit component at M is a morphism ηM ∶ 𝔻1 (M → U(⊥M)) with the universal
property:

𝑓 𝑔

M

α
A B

C

= M0 M1

M

𝑑 𝑑

ηM
A B

⊥M

C
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Connection Structure
In a double category, parallel arrow 𝑓 ∶ A → B and proarrow M ∶ A ⇸ B are companions [GP04]
if there are connection squares

A

B

B

B
𝑓 id

M

U

⋅𝑓⌟

𝑓

M

⋅𝑓⌟
A

B

and
A

A

A

B
id 𝑓

U

M

⌜𝑓 ⋅

M

𝑓⌜𝑓 ⋅

A

B

satisfying the companion laws:

𝑓
M

𝑓⌜𝑓 ⋅

⋅𝑓⌟

= 𝑓 𝑓 and

M

𝑓
M

⌜𝑓 ⋅
⋅𝑓⌟ ≅

M

M
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Companionship Properties
When they exist, companion morphisms are unique up to canonical isoglobes.
So for arrow 𝑓 ∶ A → B we write “ ̂𝑓 ∶ A ⇸ B” for its companion proarrow.

Companionship respects morphism composition structure:

𝑓 ⋅ 𝑔 = ̂𝑓 ⊙ ̂𝑔 and îd(A) = U(A)

For arrow globe α ∶ 𝑓 ⇸ 𝑔 with companionable boundary, its companion proarrow globe α̂ ∶ ̂𝑔 → ̂𝑓 is:

̂𝑓

̂𝑔

α̂ ≅

̂𝑓

𝑓 𝑔
̂𝑔

⌜𝑓 ⋅ α ⋅𝑔⌟

Companionship also respects globe composition structure (contravariantly).
There are (0, 2)-full sub-double categories of companionable arrow- and proarrow globes,
which are equivalent as bicategories.
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Unique Factorization by Connection Squares

For any square α ∶ M
𝑓◇

𝑔
N,

▶ if 𝑓 is companionable then there is a unique square λ ∶ M
id◇

𝑔
̂𝑓⊙N with λ ⋅ (⋅𝑓⌟ ⊙ U(N)) ≅ α,

▶ if 𝑔 is companionable then there is a unique square ρ ∶ M⊙ ̂𝑔
𝑓◇

id
N with (U(M) ⊙ ⌜𝑔⋅) ⋅ ρ ≅ α.

Gist:
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Gist:
(existence)

𝑓

M

N

𝑔

⋅𝑓⌟

λ ≔

𝑓

M

N

𝑔

⋅𝑓⌟

⌜𝑓 ⋅ α ≅ 𝑓

M

N

𝑔α
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Unique Factorization by Connection Squares
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id
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Gist:
(uniqueness)

̂𝑓

M

N

𝑔β ≅

̂𝑓

M

N

𝑔

⌜𝑓 ⋅
⋅𝑓⌟

β
≅

̂𝑓

M

N

𝑔α⌜𝑓 ⋅
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Conjoints

In a double category, antiparallel arrow 𝑓 ∶ A → B and proarrow M ∶ B ⇸ A are conjoints
if there are coconnection squares

𝑓

M

⋅𝑓⌝
A

B
and

M

𝑓⌞𝑓 ⋅

A

B

satisfying the conjoint laws, which are dual (under horizontal reflection) to the companion laws.

Dual to companions, conjoints extend to globes, respect composition, and are essentially unique ( ̌𝑓).
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Companions, Conjoints and Adjoints
Any two of these structures determine the third:

Gist:
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Companions, Conjoints and Adjoints
Any two of these structures determine the third:

If proarrow M ∶ A ⇸ B has companion 𝑓 and conjoint 𝑔 then 𝑓 ⊣ 𝑔.

Gist:

𝑓

𝑔

𝑓

η

ε
≔

𝑓
M 𝑔

M
𝑓

⌜𝑓 ⋅

⌞𝑔⋅
⋅𝑔⌝

⋅𝑓⌟

≅

𝑓

M

𝑓

⌜𝑓 ⋅

⋅𝑓⌟

= 𝑓𝑓
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Companions, Conjoints and Adjoints
Any two of these structures determine the third:

For arrow adjunction 𝑓 ⊣ 𝑔, a proarrow M is companion to 𝑓 iff it is conjoint to 𝑔.

Gist:

M

𝑔

M

⌞𝑔⋅
⋅𝑔⌝ ≔

M

𝑔

M

⋅𝑓⌟
η

ε
⌜𝑓 ⋅

≅

M

𝑔

M

⋅𝑓⌟
η

ε
⌜𝑓 ⋅

≅

M

𝑓

M

⋅𝑓⌟⌜𝑓 ⋅
≅

M

M

15



Profunctors

A profunctor M ∶ 𝔸 ⇸ 𝔹 is a functor M ∶ 𝔸° × 𝔹 → Set.

Profunctors act as generalized relations.

M (A ⤍ B) ≔ M(A , B) is the set of M-heteromorphisms between A and B.

To compose M ∶ 𝔸 ⇸ 𝔹 and N ∶ 𝔹 ⇸ ℂ we quotient by connected components of 𝔹 using a coend:

M ⊙ N ∶ 𝔸 ⇸ ℂ ≔ ∫
B∶𝔹

M ( 1− ⤍ B) × N (B ⤍ 2−) ∶ 𝔸° × ℂ → Set

Composition is associative up to canonical isomorphism by the “Fubini theorem” for coends [Kel82].
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Represented Profunctors
A profunctor M ∶ 𝔸 ⇸ 𝔹 is:

▶ covariantly represented by a functor I ∶ 𝔸 → 𝔹 if M = ̂I ≔ 𝔹 (I → id),
▶ contravariantly represented by a functor J ∶ 𝔹 → 𝔸 if M = ̌J ≔ 𝔸 (id → J).

When I or J is constant we recover the familiar notion of a represented presheaf.

We can compose with represented profunctors using the co-Yoneda lemma:

for profunctor N ∶ 𝔹 ⇸ 𝔻 and functors F ∶ 𝔸 → 𝔹 and G ∶ ℂ → 𝔻,

F̂ ⊙ N ≔ ∫B 𝔹 (F 1− → B) × N (B ⤍ 2−) ≅ N (F 1− ⤍ 2−)
N ⊙ Ǧ ≔ ∫D N ( 1− ⤍ D) ×𝔻 (D → G 2−) ≅ N ( 1− ⤍ G 2−)

In particular, the hom functor 𝔸 ( 1− → 2−) ∶ 𝔸° × 𝔸 → Set is an identity profunctor U ∶ 𝔸 ⇸ 𝔸.
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Represented Profunctors
A profunctor M ∶ 𝔸 ⇸ 𝔹 is:

▶ covariantly represented by a functor I ∶ 𝔸 → 𝔹 if M = ̂I ≔ 𝔹 (I → id),
▶ contravariantly represented by a functor J ∶ 𝔹 → 𝔸 if M = ̌J ≔ 𝔸 (id → J).

When I or J is constant we recover the familiar notion of a represented presheaf.
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Double Categories of Categories
To build a double category from categories, functors and profunctors we need a notion of square.

2-categories of categories have natural transformations as 2-dimensional cells,
but these are of globular, not cubical, shape.

Using represented profunctors, we can globularize the boundaries of our inteded squares.

For functors F ∶ 𝔸 → 𝔹 and G ∶ ℂ → 𝔻 and profunctors M ∶ 𝔸 ⇸ ℂ and N ∶ 𝔹 ⇸ 𝔻, a natural square
α ∶ M

F◇
G
N is a morphism of profunctors, α ∶ 𝔸 ⇸ ℂ (M → F̂ ⊙ N ⊙ Ǧ); i.e., a natural transformation

α ∶ M → N (F 1− ⤍ G 2−).

F G

M

N

α ≔

F̂ Ǧ

M

N

α

There is a double category of (small) categories, functors, profunctors, and natural squares [GP99],
where companion/conjoint proarrows are covariantly/contravariantly represented profunctors [GP04].
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Collage Categories
The cotabulator of a profunctor M ∶ 𝔸 ⇸ 𝔹 is its collage [GP99], a category Col M with:

objects the disjoint union of 𝔸-objects and 𝔹-objects,

arrows the disjoint union of 𝔸-homomorphisms, 𝔹-homomorphisms and M-heteromorphisms.

Identities and homomorphism compositions are inherited from 𝔸 and 𝔹.
Mixed composition follows by M functoriality: for 𝑎 ∶ 𝔸 (A′ → A) , 𝑥 ∶ M (A ⤍ B), 𝑏 ∶ 𝔹 (B → B′),

𝑎 ⋅ 𝑥 ⋅ 𝑏 ≔ M (𝑎 ⤍ 𝑏)(𝑥) ∶ M (A′ ⤍ B′)

Col M is displayed over the interval category with 𝔸 the fiber over 0, 𝔹 the fiber over 1,
and the heteromorphisms over 𝑖.
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0 1

A

A′

B

B′

𝑖

𝑎

𝑏

𝑥

∶ 𝕀

∶ Col M

D
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𝑎 ⋅ 𝑥 ⋅ 𝑏 ≔ M (𝑎 ⤍ 𝑏)(𝑥) ∶ M (A′ ⤍ B′)

Col M is displayed over the interval category with 𝔸 the fiber over 0, 𝔹 the fiber over 1,
and the heteromorphisms over 𝑖.
This follows from the universal property of the cotabulator:

0! 1!

M

𝑖!
𝔸 𝔹

𝕀

= M0 M1

M

D D

ηM
𝔸 𝔹

Col M

𝕀
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Interval Displays for Represented Profunctors

In the collage category of a covariantly represented profunctor, Col F̂, the morphisms
id(FA) ∶ F̂ (A ⤍ FA) are opcartesian for the display functor D ∶ Col F̂ → 𝕀.

Thus the interval display functor is a Grothendieck opfibration.

This is equivalent to a pseudofunctor 𝕀 → Cat sending 𝑖 ∶ 𝕀 (0 → 1) to the representing functor
F ∶ 𝔸 → 𝔹.
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Paths as Profunctors
Start with a 2-category of categories, interpreting types, functions and function homotopies.

Select a (0, 2)-full sub-2-category of companionable structure,
whose arrows interpret functions corresponding to paths.

Form the free double category with connection squares for companionable arrows.

Directed paths in a universe A ↝ B are interpreted by proarrows ⟦A⟧ ⇸ ⟦B⟧.

Every proarrow is companionable, so every path is transportable.

If ⟦P⟧ = F̂ ∶ ⟦A⟧ ⇸ ⟦B⟧ then ⟦tr P⟧ = F ∶ ⟦A⟧ → ⟦B⟧.

This gives us the following univalence-like principle for types A and B in a universe 𝒰:

directed paths in 𝒰 from A to B
⏞⏞⏞⏞⏞(A ↝𝒰 B) ≃ (𝑓 ∶ A → B | comp 𝑓)⏟⏟⏟⏟⏟⏟⏟⏟⏟

companionable functions from A to B
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Contravariant Transportation

In HoTT we can transport both covariantly and contravariantly along any path.

But our directed setting gives us only covariant transportation.

In order to transport contravariantly along a path, the interval display of the corresponding profunctor
must be a Grothendieck fibration.

This occurs precisely when the profunctor is contravariantly represented,

which happens when it has a covariantly represented left adjoint.
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Kan Structure
Connection structure on a double category interprets a form of Kan structure for the universe.

For arbitrary path and composable companionable functions:

A

B

D

D
𝑓 id

N

𝑓

N

cmp−

fill−

and
A

A

C

D
id 𝑔

M

cmp+

M

𝑔fill+

We have filler squares:

𝑓

̂𝑓

N

N

⋅𝑓⌟ and

M

M

̂𝑔

𝑔⌜𝑔⋅

These are universal, in the sense that any other fillers factor uniquely through them.
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Contravariant Paths

In order to fill the following “cubical horn” we need a path corresponding to the function 𝑔 “backwards”:

𝑓 𝑔

N

cmp−

fill−

≅ 𝑓

̂𝑓

N

N 𝑔′

𝑔
⋅𝑔′⌟

⋅𝑓⌟ η

If 𝑔 is conjoinable then we can fill the square.
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N

cmp−
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Path Structures on Universes

By varying which double category arrows are companionable we can model type universes
with various path structures.

Some examples:
▶ if only identity arrows are companionable then the universe is path-discrete,
▶ if all arrows are companionable, then we have a directed path structure mirroring the function

structure,
▶ if arrows of an adjoint equivalence are companionable, then all paths are bi-directional

(because all companionable arrows then have companionable left adjoints).
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27



Companion Uniqueness
Theorem
If proarrows M0, M1 ∶ A ⇸ B are each companion to arrow 𝑓 ∶ A → B then M0 ≅ M1.

Proof.
For {𝑖, 𝑗} = {0, 1}, we have:

M𝑖

𝑓
M𝑗

𝑓
M𝑖

⌜𝑓 ⋅𝑗

⋅𝑓⌟𝑗⌜𝑓 ⋅𝑖

⋅𝑓⌟𝑖

≅

M𝑖

𝑓

M𝑖

⌜𝑓 ⋅𝑖
⋅𝑓⌟𝑖

≅

M𝑖

M𝑖

So the proarrow globes ⌜𝑓 ⋅1 ⊙ ⋅𝑓⌟0 ∶ M0 → M1 and ⌜𝑓 ⋅0 ⊙ ⋅𝑓⌟1 ∶ M1 → M0 form an isomorphism.
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Companion Compositionality
It is easily checked that the companion laws are satisfied with

𝑓 ⋅ 𝑔

𝑓 ⋅ 𝑔

⋅𝑓 ⋅ 𝑔⌟ = 𝑓

̂𝑓

𝑔

̂𝑔

⋅𝑓⌟
⋅𝑔⌟

,

𝑓 ⋅ 𝑔

𝑓 ⋅ 𝑔⌜𝑓 ⋅ 𝑔⋅
=

̂𝑓

𝑓

̂𝑔

𝑔
⌜𝑓 ⋅

⌜𝑔⋅

and

id(A)

̂id(A)

⋅id(A)⌟ = id2(A) =

̂id(A)

id(A)⌜id(A)⋅
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Companion Globe Compositionality

α̂ ⊙ β ≅

̂𝑓

𝑔

ℎ̂

⌜𝑓 ⋅ α β ⋅ℎ⌟ ≅

̂𝑓

̂𝑔

ℎ̂

⌜𝑓 ⋅ α ⋅𝑔⌟

⌜𝑔⋅ β ⋅ℎ⌟
≅

̂𝑓

̂𝑔

ℎ̂

α̂

β̂
= β̂ ⋅ α̂
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