Varieties of Cubical Sets

Ulrik Buchholtz and Ed Morehouse

May 16, 2017

Summary

We study a variety of notions of cubical sets based on substructural algebraic theories presenting monoidal categories.

We explore the proof theory and homotopy theory of these cubical sets: we determine which are canonical for their language, and which are (strict) test categories in the sense of Grothendieck.

Monoidal Algebraic Theories

Structural Rules

Substructural languages let us restrict how context variables may appear in terms.

We consider the following set of structural rules:

- weakening (w) allows unused variables:
- exchange (e) allows variable order permutation:

```
x,y\vdasht(x)
x,y\vdasht(y,x)
    x}\vdasht(x,x
```


Structural Rules

Substructural languages let us restrict how context variables may appear in terms.

We consider the following set of structural rules:

- weakening (w) allows unused variables:
- exchange (e) allows variable order permutation:
- contraction (c) allows multiple use of variables:

$$
\begin{aligned}
x, y & \vdash t(x) \\
x, y & \vdash t(y, x) \\
x & \vdash t(x, x)
\end{aligned}
$$

and its subset lattice where $c \Rightarrow e$:

Interpreting Structural Rules

Interpretations for our languages will be in a monoidal category $(\mathcal{E}, \otimes, 1)$ with a single generating object $\mathrm{X}: \mathcal{E}$.

Variable contexts are interpreted as tensor-powers of X:

$$
\llbracket x_{1}, \cdots, x_{n} \rrbracket=\mathrm{X} \otimes \cdots \otimes \mathrm{X}
$$

Interpreting Structural Rules

Interpretations for our languages will be in a monoidal category $(\mathcal{E}, \otimes, 1)$ with a single generating object $\mathrm{X}: \mathcal{E}$.

Variable contexts are interpreted as tensor-powers of X:

$$
\llbracket x_{1}, \cdots, x_{n} \rrbracket=\mathrm{X} \otimes \cdots \otimes \mathrm{X}
$$

Structural rules are interpreted as morphisms:

$$
\begin{aligned}
& \llbracket \mathrm{w} \rrbracket=\varepsilon: \mathcal{E}(\mathrm{X} \rightarrow 1) \\
& \llbracket \mathrm{e} \rrbracket=\tau: \mathcal{E}(\mathrm{X} \otimes \mathrm{X} \rightarrow \mathrm{X} \otimes \mathrm{X}) \\
& \llbracket \mathrm{c} \rrbracket=\delta: \mathcal{E}(\mathrm{X} \rightarrow \mathrm{X} \otimes \mathrm{X})
\end{aligned}
$$

with some relations [Mau05].

Interpreting Structural Rules

Interpretations for our languages will be in a monoidal category $(\mathcal{E}, \otimes, 1)$ with a single generating object $\mathrm{X}: \mathcal{E}$.

Variable contexts are interpreted as tensor-powers of X:

$$
\llbracket x_{1}, \cdots, x_{n} \rrbracket=\mathrm{X} \otimes \cdots \otimes \mathrm{X}
$$

Structural rules are interpreted as morphisms:

$$
\begin{aligned}
& \llbracket \mathrm{w} \rrbracket=\varepsilon: \mathcal{E}(\mathrm{X} \rightarrow 1) \\
& \llbracket \mathrm{e} \rrbracket=\tau: \mathcal{E}(\mathrm{X} \otimes \mathrm{X} \rightarrow \mathrm{X} \otimes \mathrm{X}) \\
& \llbracket \mathrm{c} \rrbracket=\delta: \mathcal{E}(\mathrm{X} \rightarrow \mathrm{X} \otimes \mathrm{X})
\end{aligned}
$$

with some relations [Mau05].
We can draw these as:

Interpreting Structural Rules

Interpretations for our languages will be in a monoidal category $(\mathcal{E}, \otimes, 1)$ with a single generating object $\mathrm{X}: \mathcal{E}$.

Variable contexts are interpreted as tensor-powers of X:

$$
\llbracket x_{1}, \cdots, x_{n} \rrbracket=\mathrm{X} \otimes \cdots \otimes \mathrm{X}
$$

Structural rules are interpreted as morphisms:

$$
\begin{aligned}
& \llbracket \mathrm{w} \rrbracket=\varepsilon: \mathcal{E}(\mathrm{X} \rightarrow 1) \\
& \llbracket \mathrm{e} \rrbracket=\tau: \mathcal{E}(\mathrm{X} \otimes \mathrm{X} \rightarrow \mathrm{X} \otimes \mathrm{X}) \\
& \llbracket \mathrm{c} \rrbracket=\delta: \mathcal{E}(\mathrm{X} \rightarrow \mathrm{X} \otimes \mathrm{X})
\end{aligned}
$$

with some relations [Mau05].
We can draw these as:

When \mathcal{E} is symmetric monoidal, τ is the braiding.
When \mathcal{E} is cartesian monoidal, ε the unique map to 1 and δ is the diagonal.

Algebraic Signatures

Our languages are all single-sorted and algebraic (co-arity one).
We consider the following set of function symbols:

$$
\begin{array}{rll}
0,1 & : & \text { arity } 0 \\
-\vee-,-\wedge- & : & \text { arity } 2 \\
-^{\prime} & : & \text { arity } 1
\end{array}
$$

Algebraic Signatures

Our languages are all single-sorted and algebraic (co-arity one).
We consider the following set of function symbols:

$$
\begin{array}{rll}
0,1 & : & \text { arity } 0 \\
-\vee-,-\wedge- & : & \text { arity } 2 \\
-^{\prime} & : & \text { arity } 1
\end{array}
$$

and the following lattice of signatures:

Interpreting Algebraic Signatures

Function symbols are interpreted as morphisms：

$$
\begin{aligned}
& \text { 【0】, } \llbracket 1 \rrbracket=\eta_{0}, \eta_{1}: \mathcal{E}(1 \rightarrow X) \\
& \llbracket \vee \rrbracket, \llbracket \wedge \rrbracket=\mu_{0}, \mu_{1}: \mathcal{E}(\mathrm{X} \otimes \mathrm{X} \rightarrow \mathrm{X}) \\
& \llbracket^{\prime} \rrbracket=\rho: \mathcal{E}(\mathrm{X} \rightarrow \mathrm{X})
\end{aligned}
$$

with some relations．

Interpreting Algebraic Signatures

Function symbols are interpreted as morphisms:

$$
\begin{aligned}
& \llbracket 0 \rrbracket, \llbracket 1 \rrbracket=\eta_{0}, \eta_{1}: \\
& \llbracket \vee \mathbb{E}(1 \rightarrow \mathrm{X}) \\
& \llbracket \vee \mathbb{\square}, \llbracket \rrbracket=\mu_{0}, \mu_{1}: \\
& \llbracket \mathbb{E}(\mathrm{X} \otimes \mathrm{X} \rightarrow \mathrm{X}) \\
& \llbracket \rrbracket= \\
& \hline: \mathcal{E}(\mathrm{X} \rightarrow \mathrm{X})
\end{aligned}
$$

with some relations.

For $i \in\{0,1\}$, we can draw these as:

Cubical Theories

Definition (cubical language)

Let $\mathrm{L}_{(a, b)}$ be the language with structural rules $a \subseteq$ "wec" allowed by (1) and signature $b \subseteq$ " $\vee \wedge^{\prime \prime}$ " allowed by (2) (with 0 and 1 assumed).

Cubical Theories

Definition (cubical language)

Let $\mathrm{L}_{(a, b)}$ be the language with structural rules $a \subseteq$ "wec" allowed by (1) and signature $b \subseteq$ " $\vee \wedge^{\prime \prime}$ " allowed by (2) (with 0 and 1 assumed).

Definition (syntactic category of a cubical theory)
For T an equational theory in a cubical language $\mathrm{L}_{(a, b)}$, let $\mathbb{C}_{(a, b)}(\mathrm{T})$ be the syntactic category of T , with:

- morphisms generated by a and b,
- morphism equality determined by T.

Standard Structures

- standard topological interval: $\mathbb{\square}:=[0,1]$ in Top
with $x \vee y=\max (x, y), \quad x \wedge y=\min (x, y), \quad x^{\prime}=1-x$;

Standard Structures

- standard topological interval: $\mathbb{\square}:=[0,1]$ in Top with $x \vee y=\max (x, y), \quad x \wedge y=\min (x, y), \quad x^{\prime}=1-x ;$
- standard two-element set: $2:=\{0,1\}$ in SET with the relations above;
- the three-element Kleene algebra: $\mathcal{B}:=\{0, u, 1\}$ with $u^{\prime}=u$;
- the four-element de Morgan algebra: $\mathbb{D}:=\{0, u, v, 1\}$ with $u^{\prime}=u$ and $v^{\prime}=v$ (a.k.a. the diamond).

Standard Structures

- standard topological interval: $\mathbb{\square}:=[0,1]$ in Top with $x \vee y=\max (x, y), \quad x \wedge y=\min (x, y), \quad x^{\prime}=1-x ;$
- standard two-element set: $2:=\{0,1\}$ in Set with the relations above;
- the three-element Kleene algebra: $\mathcal{B}:=\{0, u, 1\}$ with $u^{\prime}=u$;
- the four-element de Morgan algebra: $\mathbb{D}:=\{0, u, v, 1\}$ with $u^{\prime}=u$ and $v^{\prime}=v$ (a.k.a. the diamond).

2 gives the theory of boolean algebras,
3 gives the theory of Kleene algebras and
\mathbb{D} gives the theory of de Morgan algebras. [GWW03]

Canonical Cube Categories

Definition

The canonical cube category for a language $\mathrm{L}_{(a, b)}$ is the syntactic category of the theory of the topological interval in $\mathrm{L}_{(a, b)}$:

$$
\mathbb{C}_{(\mathrm{a}, \mathrm{~b})}:=\mathbb{C}_{(\mathrm{a}, \mathrm{~b})}(\operatorname{Th}(\mathrm{d}))
$$

Canonical Cube Categories

Definition

The canonical cube category for a language $\mathrm{L}_{(a, b)}$ is the syntactic category of the theory of the topological interval in $\mathrm{L}_{(a, b)}$:

$$
\mathbb{C}_{(\mathrm{a}, \mathrm{~b})}:=\mathbb{C}_{(\mathrm{a}, \mathrm{~b})}(\operatorname{Th}(\mathrm{d}))
$$

Proposition 1.1

The canonical cube category $\mathbb{C}_{(\mathrm{a}, \mathrm{b})}$ is isomorphic to the monoidal subcategory of Top generated by $\mathbb{0}$ in $\mathrm{L}_{(a, b)}$.

Canonical Cube Categories

Definition

The canonical cube category for a language $\mathrm{L}_{(a, b)}$ is the syntactic category of the theory of the topological interval in $\mathrm{L}_{(a, b)}$:

$$
\mathbb{C}_{(\mathrm{a}, \mathrm{~b})}:=\mathbb{C}_{(\mathrm{a}, \mathrm{~b})}(\operatorname{Th}(\mathrm{d}))
$$

Proposition 1.1

The canonical cube category $\mathbb{C}_{(\mathrm{a}, \mathrm{b})}$ is isomorphic to the monoidal subcategory of Top generated by $\mathbb{1}$ in $\mathrm{L}_{(a, b)}$.

Proposition 1.2

For cubical language $\mathrm{L}_{(a, b)} \nsupseteq \mathrm{L}_{\left(\text {wec, } \wedge \vee^{\prime}\right)}$ we have $\operatorname{Th}(\square)=\operatorname{Th}(2)$.
For $\mathrm{L}_{\left(\mathrm{wec}, \wedge \vee^{\prime}\right)}$ we have $\operatorname{Th}(\mathbb{D})=\operatorname{Th}(3)$. [GWW03]

Canonical Cube Categories

Definition

The canonical cube category for a language $\mathrm{L}_{(a, b)}$ is the syntactic category of the theory of the topological interval in $\mathrm{L}_{(a, b)}$:

$$
\mathbb{C}_{(\mathrm{a}, \mathrm{~b})}:=\mathbb{C}_{(\mathrm{a}, \mathrm{~b})}(\operatorname{Th}(\mathrm{d}))
$$

Proposition 1.1

The canonical cube category $\mathbb{C}_{(\mathrm{a}, \mathrm{b})}$ is isomorphic to the monoidal subcategory of Top generated by $\mathbb{1}$ in $\mathrm{L}_{(a, b)}$.

Proposition 1.2

For cubical language $\mathrm{L}_{(a, b)} \nsupseteq \mathrm{L}_{\left(\mathrm{wec}, \wedge \mathrm{v}^{\prime}\right)}$ we have $\operatorname{Th}(\mathbb{\square})=\operatorname{Th}(2)$.
For $\mathrm{L}_{\left(\mathrm{wec}, \wedge v^{\prime}\right)}$ we have $\operatorname{Th}(\mathbb{0})=\operatorname{Th}(3)$. [GWW03]
Corollary 1.3
Each of our canonical cube categories has decidable morphism equality.

Cubical Axioms

Axiom	Lang. req.	Name
$\begin{gathered} x \vee(y \vee z)=(x \vee y) \vee z \\ 0 \vee x=x=x \vee 0 \\ 1 \vee x=1=x \vee 1 \\ x \vee y=y \vee x \\ x \vee x=x \end{gathered}$	$\begin{gathered} (\cdot, \mathrm{V}) \\ (\cdot, \mathrm{V}) \\ (\mathrm{w}, \mathrm{~V}) \\ (\mathrm{e}, \mathrm{~V}) \\ (\mathrm{ec}, \mathrm{~V}) \end{gathered}$	\checkmark-associativity V-unit \checkmark-absorption \checkmark-symmetry \checkmark-idempotence
$\begin{gathered} x \wedge(y \wedge z)=(x \wedge y) \wedge z \\ 1 \wedge x=x=x \wedge 1 \\ 0 \wedge x=0=x \wedge 0 \\ x \wedge y=y \wedge x \\ x \wedge x=x \end{gathered}$	$\begin{gathered} (\cdot, \wedge) \\ (\cdot, \wedge) \\ (\mathrm{w}, \wedge) \\ (\mathrm{e}, \wedge) \\ (\mathrm{ec}, \wedge) \end{gathered}$	\wedge-associativity \wedge-unit \wedge-absorption \wedge-symmetry \wedge-idempotence
$\begin{gathered} x^{\prime \prime}=x \\ 0^{\prime}=1 \end{gathered}$	$\begin{aligned} & \left(\cdot,^{\prime}\right) \\ & \left(\cdot,,^{\prime}\right) \end{aligned}$	'-involution '-computation
$\begin{aligned} & x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \\ & x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \\ & x=x \vee(x \wedge y)=x \wedge(x \vee y) \end{aligned}$	$\begin{gathered} (\mathrm{ec}, \vee \wedge) \\ (\mathrm{ec}, \vee \wedge) \\ (\mathrm{wec}, \vee \wedge) \end{gathered}$	distributive law 1 distributive law 2 lattice-absorption
$\begin{aligned} & (x \vee y)^{\prime}=x^{\prime} \wedge y^{\prime} \\ & x \wedge x^{\prime} \leq y \vee y^{\prime} \end{aligned}$	$\begin{gathered} \left(\cdot, \vee \wedge^{\prime}\right) \\ \left(\mathrm{wec}, \vee \wedge^{\prime}\right) \end{gathered}$	de Morgan's law Kleene's law

Cubical Axiomatizations

The theory of each canonical cube category with weakening is axiomatized by the equations expressible in the corresponding language.

For $\mathrm{L}_{\left(\mathrm{wec}, \wedge v^{\prime}\right)}$ we also have the non-canonical cube categories for:

- de Morgan algebras, \mathbb{C}_{dM}, satisfying all axioms except Kleene's law, (notable for being the basis of the type theory for a programming language [Coh+15])
- boolean algebras, \mathbb{C}_{BA}, additionally satisfying excluded middle: $x \vee x^{\prime}=1$.

Cubical Structures

Cubical Theories

What makes these theories "cubical"?

Cubical Theories

What makes these theories "cubical"?

Abstract cubes are monoidal powers of the interval.

Cubical Theories

What makes these theories "cubical"?

Abstract cubes are monoidal powers of the interval.

For each cube category \mathbb{C}, we write " $[n]$ " for $\mathrm{X}^{\otimes n}\left(=\llbracket x_{1}, \cdots, x_{n} \rrbracket\right)$.

n-Dimensional Cubes

0-dimensional cube (point):

$$
[0]=\llbracket \cdot \rrbracket
$$

n-Dimensional Cubes

1-dimensional cube (interval):

$$
[1] \quad=\llbracket x \rrbracket
$$

n-Dimensional Cubes

2-dimensional cube (square):

$[2] \quad=\llbracket x, y \rrbracket$

n-Dimensional Cubes

3-dimensional cube (cube):

n-Dimensional Cubes

n-dimensional cube:

$$
[n] \quad=\llbracket x_{1}, \cdots, x_{n} \rrbracket
$$

Cubical Sets

A cubical set is a presheaf on a cube category (i.e. a functor $\mathrm{X}: \mathbb{C}^{\circ} \rightarrow \mathrm{SET}$):

- an object $[n]: \mathbb{C}$ determines a set of n-cubes,
- an arrow $\varphi: \mathbb{C}([n] \rightarrow[m])$ determines a function $\mathrm{X}(\varphi)$ from m-cubes to n-cubes.

Cube Faces

In the canonical cube category $\mathbb{C}_{(\cdot, \cdot)}$, the η_{i} generate the face maps:

Cubes with Degeneracies

The map ε generates degeneracies.
In the canonical cube category $\mathbb{C}_{(\mathrm{w}, \cdot)}$, the monoidal unit (1) is terminal.

Cubes with Degeneracies

The map ε generates degeneracies.
In the canonical cube category $\mathbb{C}_{(\mathrm{w}, \mathrm{r})}$, the monoidal unit (1) is terminal.
This gives the face-degeneracy laws:

Cubes with Diagonals

The map δ generates diagonals.
In the canonical cube category $\mathbb{C}_{(\mathrm{wec}, \cdot)}$, the maps $(\delta, \varepsilon, \tau)$ form a cocommutative comonoid,

Cubes with Diagonals

The map δ generates diagonals.
In the canonical cube category $\mathbb{C}_{(\text {wec, },)}$, the maps $(\delta, \varepsilon, \tau)$ form a cocommutative comonoid,
and δ interacts with the η_{i} by the face-diagonal laws:

Cubes with Reversals

The involution ρ generates reversals.

Cubes with Reversals

The involution ρ generates reversals.
ρ interacts with the η_{i} by the face-reversal laws:

where $i \neq j$

$$
[1] \longrightarrow[1]
$$

Cubes with Connections

The maps μ_{i} generate connections.
In the canonical cube category $\mathbb{C}_{(\mathrm{w}, \mathrm{v} \wedge)}$, the maps $\left(\mu_{i}, \eta_{i}\right)$ form a monoid.

Cubes with Connections

The maps μ_{i} generate connections.
In the canonical cube category $\mathbb{C}_{(\mathrm{w}, \mathrm{V} \wedge)}$, the maps $\left(\mu_{i}, \eta_{i}\right)$ form a monoid.
Each η_{i} is an absorbing element for $\mu_{j}(i \neq j)$, giving the dioid laws [GM03]:

$$
\begin{aligned}
& {[2] \longrightarrow \mu_{0}[1] \longleftarrow \mu_{1}[2]}
\end{aligned}
$$

The Full Signature

In the canonical cube category $\mathbb{C}_{\left(\cdot, \mathrm{V} \wedge^{\prime}\right)}$, reversal interacts with connections by the de Morgan law:

And in the canonical cube category $\mathbb{C}_{\left(\text {wec }, \vee \wedge^{\prime}\right)}$, by the algebraic characterization of order in a lattice, we have the Kleene law:

Homotopy of Cubes

Classical Homotopy

The homotopy of topological spaces can be described by (weak) ∞-groupoids.

Classical Homotopy

The homotopy of topological spaces can be described by (weak) ∞-groupoids.

The classical homotopy category is formed by formally inverting (localizing at) the (weak) homotopy equivalences:

$$
\mathrm{TOP} \longmapsto \mathrm{HOT}=\mathrm{Ho}(\mathrm{Top})=\operatorname{Top}\left[\mathcal{W}^{-1}\right]
$$

Synthetic Homotopy

For any small category \mathbb{C}, the slice functor, $\mathbb{C}_{/-}: \mathbb{C} \rightarrow$ CAT uniquely determines an adjunction:

where $\int_{\mathbb{C}}$ gives the category of elements of a presheaf, and $N_{\mathbb{C}}$ is the nerve functor: $\quad \mathcal{N}_{\mathbb{C}}(\mathbb{D})(\mathrm{A})=\operatorname{CAT}\left(\mathbb{C}_{/ \mathrm{A}} \rightarrow \mathbb{D}\right)$.

Synthetic Homotopy

For any small category \mathbb{C}, the slice functor, $\mathbb{C}_{/-}: \mathbb{C} \rightarrow$ CAT uniquely determines an adjunction:

where $\int_{\mathbb{C}}$ gives the category of elements of a presheaf, and $\mathrm{N}_{\mathbb{C}}$ is the nerve functor: $\quad \mathcal{N}_{\mathbb{C}}(\mathbb{D})(\mathrm{A})=\operatorname{CAT}\left(\mathbb{C}_{/ \mathrm{A}} \rightarrow \mathbb{D}\right)$.

Via simplicial sets, the category Cat also presents the homotopy category Нот.
Grothendieck showed this permits the study of synthetic homotopy for the category of presheaves over any small category. [Gro83]

Test Categories

- \mathbb{C} is a weak test category if the adjunction extends to an adjoint equivalence on the localizations:

Test Categories

- \mathbb{C} is a weak test category if the adjunction extends to an adjoint equivalence on the localizations:

- \mathbb{C} is a test category if it, and each of its slices, is weak test.

Test Categories

- \mathbb{C} is a weak test category if the adjunction extends to an adjoint equivalence on the localizations:

- \mathbb{C} is a test category if it, and each of its slices, is weak test.
- \mathbb{C} is a strict test category it is test and the functor $\widehat{\mathbb{C}} \rightarrow$ Нот preserves finite products.

Test Categories

- \mathbb{C} is a weak test category if the adjunction extends to an adjoint equivalence on the localizations:

- \mathbb{C} is a test category if it, and each of its slices, is weak test.
- \mathbb{C} is a strict test category it is test and the functor $\widehat{\mathbb{C}} \rightarrow$ Нот preserves finite products.
Idea: presheaves of test categories have "the right homotopy", which is preserved under products for strict test categories.

Canonical Cube Test Categories

Theorem 3.1

- The canonical cube categories for theories with the structural rule of weakening are test categories.

$a \backslash b$	\cdot	\prime	\vee	\wedge	$\vee \wedge$	$V \wedge^{\prime}$
w	t	t	t	t	t	t
we	t	t	t	t	t	t
wec	t	t	t	t	t	t

Which canonical cube categories $\mathbb{C}_{(a, b)}$ are test (t) or even strict test (st).

Canonical Cube Test Categories

Theorem 3.1

- The canonical cube categories for theories with the structural rule of weakening are test categories.
- The canonical cube categories for theories with contraction as well are strict test categories.

$a \backslash b$	\cdot	\prime	\vee	\wedge	$\vee \wedge$	$\vee \wedge^{\prime}$
w	t	t	t	t	t	t
$w e$	t	t	t	t	t	t
wec	st	st	st	st	st	st

Which canonical cube categories $\mathbb{C}_{(a, b)}$ are test (t) or even strict test (st).

Canonical Cube Test Categories

Theorem 3.1

- The canonical cube categories for theories with the structural rule of weakening are test categories.
- The canonical cube categories for theories with contraction as well are strict test categories.
- The canonical cube categories for theories with at least one binary connective are strict test categories.

$a \backslash b$	\cdot	\prime	V	\wedge	$V \wedge$	$V \wedge^{\prime}$
w	t	t	st	st	st	st
we	t	t	st	st	st	st
wec	st	st	st	st	st	st

Which canonical cube categories $\mathbb{C}_{(a, b)}$ are test (t) or even strict test (st).

Canonical Cube Test Categories

Theorem 3.1

- The canonical cube categories for theories with the structural rule of weakening are test categories.
- The canonical cube categories for theories with contraction as well are strict test categories.
- The canonical cube categories for theories with at least one binary connective are strict test categories.
- The non-canonical cube categories for the theories of de Morgan and boolean algebras are strict test categories.

$\mathrm{a} \backslash \mathrm{b}$	\cdot	\prime	\vee	\wedge	$\vee \wedge$	$V \wedge^{\prime}$
w	t	t	st	st	st	st
we	t	t	st	st	st	st
wec	st	st	st	st	st	st/st/st

The bottom-right corner refers to the cube categories for de Morgan, Kleene and boolean algebras.

Canonical Cube Test Categories

Theorem 3.1

- The canonical cube categories for theories with the structural rule of weakening are test categories.
- The canonical cube categories for theories with contraction as well are strict test categories.
- The canonical cube categories for theories with at least one binary connective are strict test categories.
- The non-canonical cube categories for the theories of de Morgan and boolean algebras are strict test categories.

$\mathrm{a} \backslash \mathrm{b}$	\cdot	\prime	\vee	\wedge	$\vee \wedge$	$V \wedge^{\prime}$
w	t	t	st	st	st	st
we	t	t	st	st	st	st
wec	st	st	st	st	st	st/st/st

Upshot: having either the diagonal or a connection suffices for strict test.

References

Cyril Cohen et al. "Cubical Type Theory: a constructive interpretation of the univalence axiom". In: International
Conference on Types for Proofs and Programs. 2015. url: https://arxiv.org/abs/1611.02108 (cit. on
p. 24).

Mai Gehrke, Carol L. Walker, and Elbert A. Walker. "Normal Forms and Truth Tables for Fuzzy Logics". In: Fuzzy Sets and Systems 138.1 (2003), pp. 25-51 (cit. on pp. 16-22).

Marco Grandis and Luca Mauri. "Cubical Sets and their Site". In:
Theory and Application of Categories 11.8 (2003), pp. 185-211 (cit. on pp. 42, 43).
Alexander Grothendieck. "Pursuing Stacks". 1983. URL: https: //thescrivener.github.io/PursuingStacks/ (cit. on pp. 48, 49).

Luca Mauri. "Algebraic Theories in Monoidal Categories". 2005 (cit. on pp. 6-9).

