Varieties of Cubical Sets

Ulrik Buchholtz and Ed Morehouse

May 16, 2017



Summary

We study a variety of notions of cubical sets
based on substructural algebraic theories
presenting monoidal categories.

We explore the proof theory and homotopy theory of these cubical sets:
we determine which are canonical for their language,
and which are (strict) test categories in the sense of Grothendieck.
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Monoidal Algebraic Theories
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Structural Rules

Substructural languages let us restrict how context variables may appear in
terms.

We consider the following set of structural rules:

» weakening (w) allows unused variables: x,y F t(x)
» exchange (e) allows variable order permutation: x,y F ty,x)
» contraction (c) allows multiple use of variables: x - t(z, )



Structural Rules

Substructural languages let us restrict how context variables may appear in

terms.

We consider the following set of structural rules:

> weakening (w) allows unused variables:

» exchange (e) allows variable order permutation:
» contraction (c) allows multiple use of variables:

and its subset lattice where ¢ = e:

x,y F t(x)

z,y -y, o)
x - t(z, )



Interpreting Structural Rules
Interpretations for our languages will be in a monoidal category (£,®,1)
with a single generating object X : &.

Variable contexts are interpreted as tensor-powers of X:

[[1'17”'7‘%11]] = X®®X
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Interpreting Structural Rules

Interpretations for our languages will be in a monoidal category (£,®,1)

with a single generating object X : &.

Variable contexts are interpreted as tensor-powers of X:

[z,

Structural rules are interpreted as morphisms:

Wl =
[e] =
[c] =

with some relations [Mau05].

We can draw these as:

€
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Interpreting Structural Rules
Interpretations for our languages will be in a monoidal category (£,®,1)
with a single generating object X : &.

Variable contexts are interpreted as tensor-powers of X:
”:'Tl 7...71-“]] = X®®X

Structural rules are interpreted as morphisms:

[w] = & : £EX—=1)
f[e] = 7 : EXRX—->X®X)
[c] = & : EX=>XQX)

with some relations [Mau05].

We can draw these as:

=) A

) )

When & is symmetric monoidal, T is the braiding.
When €& is cartesian monoidal, € the unique map to 1 and 3 is the diagonal.



Algebraic Signatures

Our languages are all single-sorted and algebraic (co-arity one).
We consider the following set of function symbols:

0,1 : arity0
—V—,—A— : arity?2

’

=/ ¢ arity 1



Algebraic Signatures

Our languages are all single-sorted and algebraic (co-arity one).

We consider the following set of function symbols:

0,1 : arity0
—V—,—A— : arity?2
— ¢ arity 1

and the following lattice of signatures:

{0’17\/7/\7/}

/ T~
{0,1,Vv,A}
_— T~

{0,1,"} {0,1,Vv} {0,1,A}

~

{0,1}
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Interpreting Algebraic Signatures

Function symbols are interpreted as morphisms:

o, = ng,m : £(1—=X)
VI, IAD = poom = EXOX—=X)
[l = p : X = X)

with some relations.



Interpreting Algebraic Signatures

Function symbols are interpreted as morphisms:

o, = ng,m : £(1—=X)
VI, IAD = poom = EXOX—=X)
[l = p : X = X)

with some relations.

Fori € {0, 1}, we can draw these as:

¢ L




Cubical Theories

Definition (cubical language)
Let L, ;) be the language with structural rules a C “wec” allowed by (1)
and signature b C “v A ’" allowed by (2) (with 0 and 1 assumed).
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Cubical Theories

Definition (cubical language)
Let L, ;) be the language with structural rules a C “wec” allowed by (1)
and signature b C “v A ’" allowed by (2) (with 0 and 1 assumed).

Definition (syntactic category of a cubical theory)

For T an equational theory in a cubical language L, ;),
let C(, ;) (T) be the syntactic category of T, with:

» morphisms generated by a and b,
» morphism equality determined by T.
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Standard Structures

> standard topological interval: [:=[0,1]in Top
with zVy=max(z,y), zAy=min(z,y), 2’ =1—x;
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Standard Structures

standard topological interval: [:=[0,1]in Top
with zVy=max(z,y), zAy=min(z,y), 2’ =1—x;

standard two-element set: 2:={0,1}in SET
with the relations above;

the three-element Kleene algebra: 3:={0,u,1} with o =u;

the four-element de Morgan algebra: D := {0, u,v, 1}
with " =u and v =v (ak.a. the diamond).

/28



Standard Structures

> standard topological interval: [:=[0,1]in Top
with zVy=max(z,y), zAy=min(z,y), 2’ =1—x;

» standard two-element set: 2:={0,1}in SET
with the relations above;

> the three-element Kleene algebra: 3:= {0, u,1} with « =u;

> the four-element de Morgan algebra: D :={0,u,v, 1}
with " =u and v =v (ak.a. the diamond).

2 gives the theory of boolean algebras,
3 gives the theory of Kleene algebras and
D gives the theory of de Morgan algebras. [GWWO03]



Canonical Cube Categories

Definition
The canonical cube category for a language L, ;) is the syntactic category
of the theory of the topological interval in L, ;)

Clab) = Clap) (Th(D))

10/28



Canonical Cube Categories

Definition
The canonical cube category for a language L, ;) is the syntactic category
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The canonical cube category <D<a7b> is isomorphic to the monoidal subcategory
of Top generatedby [ in L.
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Canonical Cube Categories

Definition
The canonical cube category for a language L, ;) is the syntactic category
of the theory of the topological interval in L, ;)

Clab) = Clap) (Th(D))

Proposition 1.1
The canonical cube category <D<a7b> is isomorphic to the monoidal subcategory
of Top generatedby [ in L.

Proposition 1.2
For cubical language L, ;) = L< ec,nv) We have Th(l) = Th(2).
For Lyec,nv7) We have Th(l) = Th(3). [GWWO3]

Corollary 1.3
Each of our canonical cube categories has decidable morphism equality.
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Cubical Axioms

Axiom Lang. req. Name
zV(yVz)=(xVyVz (-, V) V-associativity
OVe=xz=zVO0 (-, V) V-unit
lve=1=2Vl1 (w, V) V-absorption
zVy=yVzx (e, V) V-symmetry
zVzr=c (ec, V) V-idempotence
cA(yNz)=(xAYy) Az (-, A) A-associativity
INz=xz=2A1 (-, A) A-unit
ONz=0=xA0 (w, N) A-absorption
TANy=yAzx (e,N) A-symmetry
ThNT=cx (ec, A) A-idempotence
=z (-,7) ’-involution
0=1 (-, ’-computation
A (yVz)=(xAy)V(zAz) (ec, VA) distributive law 1
zV(yAz)=(zVy A(zVz2) (ec, VA) distributive law 2
z=zV(zAy)=xA(xzVy) (wec,VA) lattice-absorption
(zVvy) =z' Ny (-, VA) de Morgan’s law

Az’ <yvy

Kleene’s law
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Cubical Axiomatizations

The theory of each canonical cube category with weakening is axiomatized
by the equations expressible in the corresponding language.

For Lyec,v7) We also have the non-canonical cube categories for :

» de Morgan algebras, C,,, satisfying all axioms except Kleene’s law,
(notable for being the basis of the type theory for a programming language
[Coh+15])

> boolean algebras, C,, additionally satisfying excluded middle:
zVa =1
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Cubical Structures
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Cubical Theories

What makes these theories “cubical”?
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Cubical Theories

What makes these theories “cubical”?

Abstract cubes are monoidal powers of the interval.
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Cubical Theories

What makes these theories “cubical”?

Abstract cubes are monoidal powers of the interval.

For each cube category C, we write “[n]” for X®" (= [z, -, ,,])-
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n-Dimensional Cubes

0-dimensional cube (point):
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n-Dimensional Cubes

1-dimensional cube (interval):

o—>0

(1] ==l

15/28



n-Dimensional Cubes

2-dimensional cube (square):

|

—

oO&———o©o

2] =z, ]
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n-Dimensional Cubes

3-dimensional cube (cube):

g

o< 70

v
‘]

y

@Q&——O©

[3] :[[m’yvzﬂ
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n-Dimensional Cubes

n-dimensional cube:

777

[n} = [[:1:1 » :Z:nﬂ
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Cubical Sets

A cubical set is a presheaf on a cube category (i.e. a functor X : C° — SET):

» an object [n] : C determines a set of n-cubes,

» anarrow g : C ([n] — [m]) determines a function X(¢) from m-cubes to
n-cubes.
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Cube Faces

In the canonical cube category C,. ), the n; generate the face maps:

[0] (1]
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Cubes with Degeneracies

The map = generates degeneracies.

In the canonical cube category C,, .), the monoidal unit (1) is terminal.
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Cubes with Degeneracies

The map = generates degeneracies.
In the canonical cube category C,, .), the monoidal unit (1) is terminal.

This gives the face-degeneracy laws:

1] - 0]
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Cubes with Diagonals

The map d generates diagonals.

In the canonical cube category C, ,the maps (8§ ,¢, 1) form a

cocommutative comonoid,

wec,-)
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Cubes with Diagonals

The map d generates diagonals.

In the canonical cube category C,
cocommutative comonoid,

,the maps (8§ ,¢, 1) form a

wec,-)

and 9§ interacts with the ), by the face-diagonal laws:

gl

/\? b
Aa)
d

a2 l a |
c——>d
1] 2]
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Cubes with Reversals

The involution p generates reversals.
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Cubes with Reversals

The involution p generates reversals.

p interacts with the n, by the face-reversal laws:

= % where i # j

b$a a$b
1] (1]
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Cubes with Connections

The maps p,; generate connections.

In the canonical cube category C, ), the maps (p; ,m;) form a monoid.
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Cubes with Connections

The maps p,; generate connections.
In the canonical cube category C, ), the maps (p; ,m;) form a monoid.

Each n, is an absorbing element for yi; (i # j), giving the dioid laws [GMO03]:

® | e | _ ®
©) (’P ©)
aL a—sa
A a—t "oy l S
b—>b a—>b
o s ] [2
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The Full Signature

In the canonical cube category C,. , ./, reversal interacts with connections by

the de Morgan law:

$-By

And in the canonical cube category Cycc v
of order in a lattice, we have the Kleene law:

G5

.

) by the algebraic characterization

22/28



Homotopy of Cubes
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Classical Homotopy

The homotopy of topological spaces can be described by (weak) oo-groupoids.

24/28



Classical Homotopy

The homotopy of topological spaces can be described by (weak) oo-groupoids.

The classical homotopy category is formed by formally inverting (localizing at)
the (weak) homotopy equivalences:

Top — HoT = Ho(Topr) = Tor[W1]
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Synthetic Homotopy

For any small category C, the slice functor, C,_ : C — CAT uniquely determines
an adjunction:

C
Y C,
k
C°>SeT=C @ CAT
Ne

where fc gives the category of elements of a presheaf,
and N is the nerve functor: N (D)(A) = Cat (C/, — D).
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Synthetic Homotopy

For any small category C, the slice functor, C,_ : C — CAT uniquely determines
an adjunction:

C
Y C,
k
C°>SeT=C @ CAT
Ne

where f@ gives the category of elements of a presheaf,
and N is the nerve functor: N (D)(A) = Cat (C/, — D).

Via simplicial sets, the category CAT also presents the homotopy category HOT.

Grothendieck showed this permits the study of synthetic homotopy for the
category of presheaves over any small category. [Gro83]
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Test Categories

» Cis a weak test category if the adjunction extends to an
adjoint equivalence on the localizations:
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Test Categories

» Cis a weak test category if the adjunction extends to an
adjoint equivalence on the localizations:

CAT[W,, '] = HoT

» Cis a test category if it, and each of its slices, is weak test.
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Test Categories

» Cis a weak test category if the adjunction extends to an
adjoint equivalence on the localizations:

Cw.™ L~ CAT[W,, '] = HoT

» Cis a test category if it, and each of its slices, is weak test.

> Cis a strict test category it is test and the functor C — Hor
preserves finite products.
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Test Categories

» Cis a weak test category if the adjunction extends to an
adjoint equivalence on the localizations:

Cw.™ L~ CAT[W,, '] = HoT

» Cis a test category if it, and each of its slices, is weak test.

> Cis a strict test category it is test and the functor C — Hor
preserves finite products.

Idea: presheaves of test categories have “the right homotopy”,
which is preserved under products for strict test categories.
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Canonical Cube Test Categories

Theorem 3.1

» The canonical cube categories for theories with the structural rule of
weakening are test categories.

a\b : ! V A VA VA
w t t t t t t

we t t t t t t

wec t t t t t t

Which canonical cube categories C<a7b) are test () or even strict test (st).
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Canonical Cube Test Categories

Theorem 3.1

» The canonical cube categories for theories with the structural rule of
weakening are test categories.

» The canonical cube categories for theories with contraction as well are
strict test categories.
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Canonical Cube Test Categories

Theorem 3.1
» The canonical cube categories for theories with the structural rule of
weakening are test categories.

» The canonical cube categories for theories with contraction as well are
strict test categories.

» The canonical cube categories for theories with at least one binary
connective are strict test categories.

a\b . ! V A VA VA
w t t st st st st

we t t st st st st

wec st st st st st st

Which canonical cube categories C<a7b) are test () or even strict test (st).
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Canonical Cube Test Categories

Theorem 3.1
» The canonical cube categories for theories with the structural rule of
weakening are test categories.

» The canonical cube categories for theories with contraction as well are
strict test categories.

» The canonical cube categories for theories with at least one binary
connective are strict test categories.

» The non-canonical cube categories for the theories of de Morgan and
boolean algebras are strict test categories.

a\b . ! V A VA VA
w t t st st st st

we t t st st st st

wec st st st st st st/st/st

The bottom-right corner refers to the cube categories for de Morgan, Kleene and
boolean algebras.
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Canonical Cube Test Categories

Theorem 3.1
» The canonical cube categories for theories with the structural rule of
weakening are test categories.

» The canonical cube categories for theories with contraction as well are
strict test categories.

» The canonical cube categories for theories with at least one binary
connective are strict test categories.

» The non-canonical cube categories for the theories of de Morgan and
boolean algebras are strict test categories.

a\b . ! V A VA VA
w t t st st st st

we t t st st st st

wec st st st st st st/st/st

Upshot: having either the diagonal or a connection suffices for strict test.
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