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Summary

We study a variety of notions of cubical sets
based on substructural algebraic theories
presenting monoidal categories.

We explore the proof theory and homotopy theory of these cubical sets:
we determine which are canonical for their language,
and which are (strict) test categories in the sense of Grothendieck.

2 / 28



Monoidal Algebraic Theories
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Structural Rules
Substructural languages let us restrict how context variables may appear in
terms.

We consider the following set of structural rules:
▶ weakening (w) allows unused variables: 𝑥 , 𝑦 ⊢ 𝑡(𝑥)
▶ exchange (e) allows variable order permutation: 𝑥 , 𝑦 ⊢ 𝑡(𝑦 , 𝑥)
▶ contraction (c) allows multiple use of variables: 𝑥 ⊢ 𝑡(𝑥 , 𝑥)

and its subset lattice where c ⇒ e:

{w , e , c}

{w , e}

{w}

{e , c}

{e}

∅

(1)
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Interpreting Structural Rules
Interpretations for our languages will be in a monoidal category (ℰ , ⊗ , 1)
with a single generating object X ∶ ℰ.

Variable contexts are interpreted as tensor-powers of X:

⟦𝑥1 , ⋯ , 𝑥𝑛⟧ = X ⊗ ⋯ ⊗ X

Structural rules are interpreted as morphisms:

⟦w⟧ = ε ∶ ℰ (X → 1)
⟦e⟧ = τ ∶ ℰ (X ⊗ X → X ⊗ X)
⟦c⟧ = δ ∶ ℰ (X → X ⊗ X)

with some relations [Mau05].

We can draw these as:

, ,

When ℰ is symmetric monoidal, τ is the braiding.
When ℰ is cartesian monoidal, ε the unique map to 1 and δ is the diagonal.
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Algebraic Signatures
Our languages are all single-sorted and algebraic (co-arity one).

We consider the following set of function symbols:

0 , 1 ∶ arity 0
− ∨ − , − ∧ − ∶ arity 2

−′ ∶ arity 1

and the following lattice of signatures:

{0 , 1 , ∨ , ∧ , ′}

{0 , 1 , ∨ , ∧}

{0 , 1 , ∨} {0 , 1 , ∧}

{0 , 1}

{0 , 1 , ′}
(2)
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Interpreting Algebraic Signatures

Function symbols are interpreted as morphisms:

⟦0⟧ , ⟦1⟧ = η0 , η1 ∶ ℰ (1 → X)
⟦∨⟧ , ⟦∧⟧ = μ0 , μ1 ∶ ℰ (X ⊗ X → X)

⟦′⟧ = ρ ∶ ℰ (X → X)

with some relations.

For 𝑖 ∈ {0 , 1}, we can draw these as:

𝑖
,

𝑖
,
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Cubical Theories

Definition (cubical language)
Let L(𝑎,𝑏) be the language with structural rules 𝑎 ⊆ “wec” allowed by (1)
and signature 𝑏 ⊆ “∨ ∧ ′” allowed by (2) (with 0 and 1 assumed).

Definition (syntactic category of a cubical theory)
For T an equational theory in a cubical language L(𝑎,𝑏),
let ℂ(𝑎,𝑏)(T) be the syntactic category of T, with:

▶ morphisms generated by 𝑎 and 𝑏,
▶ morphism equality determined by T.
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Standard Structures

▶ standard topological interval: 𝕀 ≔ [0 , 1] in Top
with 𝑥 ∨ 𝑦 = max(𝑥 , 𝑦), 𝑥 ∧ 𝑦 = min(𝑥 , 𝑦), 𝑥′ = 1 − 𝑥;

▶ standard two-element set: 𝟚 ≔ {0 , 1} in Set
with the relations above;

▶ the three-element Kleene algebra: 𝟛 ≔ {0 , 𝑢 , 1} with 𝑢′ = 𝑢;
▶ the four-element de Morgan algebra: 𝔻 ≔ {0 , 𝑢 , 𝑣 , 1}

with 𝑢′ = 𝑢 and 𝑣′ = 𝑣 (a.k.a. the diamond).

𝟚 gives the theory of boolean algebras,
𝟛 gives the theory of Kleene algebras and
𝔻 gives the theory of de Morgan algebras. [GWW03]
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Canonical Cube Categories

Definition
The canonical cube category for a language L(𝑎,𝑏) is the syntactic category
of the theory of the topological interval in L(𝑎,𝑏):

ℂ(a,b) ≔ ℂ(a,b)(Th(𝕀))

Proposition 1.1
The canonical cube category ℂ(a,b) is isomorphic to the monoidal subcategory
of Top generated by 𝕀 in L(𝑎,𝑏).

Proposition 1.2
For cubical language L(𝑎,𝑏) ≨ L(wec,∧∨′) we have Th(𝕀) = Th(𝟚).
For L(wec,∧∨′) we have Th(𝕀) = Th(𝟛). [GWW03]

Corollary 1.3
Each of our canonical cube categories has decidable morphism equality.
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Cubical Axioms
Axiom Lang. req. Name

𝑥 ∨ (𝑦 ∨ 𝑧) = (𝑥 ∨ 𝑦) ∨ 𝑧 (⋅ , ∨) ∨-associativity
0 ∨ 𝑥 = 𝑥 = 𝑥 ∨ 0 (⋅ , ∨) ∨-unit
1 ∨ 𝑥 = 1 = 𝑥 ∨ 1 (w , ∨) ∨-absorption

𝑥 ∨ 𝑦 = 𝑦 ∨ 𝑥 (e , ∨) ∨-symmetry
𝑥 ∨ 𝑥 = 𝑥 (ec , ∨) ∨-idempotence

𝑥 ∧ (𝑦 ∧ 𝑧) = (𝑥 ∧ 𝑦) ∧ 𝑧 (⋅ , ∧) ∧-associativity
1 ∧ 𝑥 = 𝑥 = 𝑥 ∧ 1 (⋅ , ∧) ∧-unit
0 ∧ 𝑥 = 0 = 𝑥 ∧ 0 (w , ∧) ∧-absorption

𝑥 ∧ 𝑦 = 𝑦 ∧ 𝑥 (e , ∧) ∧-symmetry
𝑥 ∧ 𝑥 = 𝑥 (ec , ∧) ∧-idempotence

𝑥″ = 𝑥 (⋅ , ′) ′-involution
0′ = 1 (⋅ , ′) ′-computation

𝑥 ∧ (𝑦 ∨ 𝑧) = (𝑥 ∧ 𝑦) ∨ (𝑥 ∧ 𝑧) (ec , ∨∧) distributive law 1
𝑥 ∨ (𝑦 ∧ 𝑧) = (𝑥 ∨ 𝑦) ∧ (𝑥 ∨ 𝑧) (ec , ∨∧) distributive law 2
𝑥 = 𝑥 ∨ (𝑥 ∧ 𝑦) = 𝑥 ∧ (𝑥 ∨ 𝑦) (wec , ∨∧) lattice-absorption

(𝑥 ∨ 𝑦)′ = 𝑥′ ∧ 𝑦′ (⋅ , ∨∧′) de Morgan’s law
𝑥 ∧ 𝑥′ ≤ 𝑦 ∨ 𝑦′ (wec , ∨∧′) Kleene’s law
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Cubical Axiomatizations

The theory of each canonical cube category with weakening is axiomatized
by the equations expressible in the corresponding language.

For L(wec,∧∨′) we also have the non-canonical cube categories for :
▶ de Morgan algebras, ℂdM, satisfying all axioms except Kleene’s law,

(notable for being the basis of the type theory for a programming language
[Coh+15])

▶ boolean algebras, ℂBA, additionally satisfying excluded middle:
𝑥 ∨ 𝑥′ = 1.
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Cubical Structures
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Cubical Theories

What makes these theories “cubical”?

Abstract cubes are monoidal powers of the interval.

For each cube category ℂ, we write “[𝑛]” for X⊗𝑛 (= ⟦𝑥1 , ⋯ , 𝑥𝑛⟧).
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𝑛-Dimensional Cubes

0-dimensional cube (point):

[0] = ⟦⋅⟧

●
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𝑛-Dimensional Cubes

1-dimensional cube (interval):

[1] = ⟦𝑥⟧

● ●
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𝑛-Dimensional Cubes

2-dimensional cube (square):

[2] = ⟦𝑥 , 𝑦⟧

●

●

●

●
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𝑛-Dimensional Cubes

3-dimensional cube (cube):

[3] = ⟦𝑥 , 𝑦 , 𝑧⟧

●

●

●

●

●

●

●

●
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𝑛-Dimensional Cubes

𝑛-dimensional cube:

[𝑛] = ⟦𝑥1 , ⋯ , 𝑥𝑛⟧

???

⋯

15 / 28



Cubical Sets

A cubical set is a presheaf on a cube category (i.e. a functor X ∶ ℂ° → Set):

▶ an object [𝑛] ∶ ℂ determines a set of 𝑛-cubes,
▶ an arrow φ ∶ ℂ ([𝑛] → [𝑚]) determines a function X(φ) from 𝑚-cubes to

𝑛-cubes.
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Cube Faces

In the canonical cube category ℂ(⋅,⋅), the η𝑖 generate the face maps:

[0] [1] [0]

𝑎 𝑏𝑓𝑎 𝑏

η0 η1

17 / 28



Cubes with Degeneracies
The map ε generates degeneracies.

In the canonical cube category ℂ(w,⋅), the monoidal unit (1) is terminal.

This gives the face-degeneracy laws:

𝑖 =

[1] [0]

𝑎𝑎 𝑎∗

ε
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Cubes with Diagonals
The map δ generates diagonals.

In the canonical cube category ℂ(wec,⋅), the maps (δ , ε , τ) form a
cocommutative comonoid,

and δ interacts with the η𝑖 by the face-diagonal laws:

𝑖 = 𝑖 𝑖

[1] [2]

𝑎

𝑐

𝑏

𝑑
α𝑎 𝑑∆(α)

δ
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Cubes with Reversals
The involution ρ generates reversals.

ρ interacts with the η𝑖 by the face-reversal laws:

𝑖 = 𝑗 where 𝑖 ≠ 𝑗

[1] [1]

𝑎 𝑏𝑓𝑏 𝑎!𝑓

ρ
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Cubes with Connections
The maps μ𝑖 generate connections.

In the canonical cube category ℂ(w,∨∧), the maps (μ𝑖 , η𝑖) form a monoid.

Each η𝑖 is an absorbing element for μ𝑗 (𝑖 ≠ 𝑗), giving the dioid laws [GM03]:

𝑖
𝑗

=
𝑖

= 𝑖
𝑗

[2] [1] [2]

𝑎 𝑏𝑓
𝑎

𝑏

𝑏

𝑏
𝑓

∗

𝑓

∗𝑓⌟
𝑎

𝑎

𝑎

𝑏
∗

𝑓

∗

𝑓⌜𝑓

µ0 µ1
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The Full Signature

In the canonical cube category ℂ(⋅,∨∧′), reversal interacts with connections by
the de Morgan law:

𝑖 =
𝑗

And in the canonical cube category ℂ(wec,∨∧′), by the algebraic characterization
of order in a lattice, we have the Kleene law:

𝑖 𝑗
𝑖

=
𝑖
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Homotopy of Cubes
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Classical Homotopy

The homotopy of topological spaces can be described by (weak) ∞-groupoids.

The classical homotopy category is formed by formally inverting (localizing at)
the (weak) homotopy equivalences:

Top ⟼ Hot = Ho(Top) = Top[𝒲−1]

24 / 28



Classical Homotopy

The homotopy of topological spaces can be described by (weak) ∞-groupoids.

The classical homotopy category is formed by formally inverting (localizing at)
the (weak) homotopy equivalences:

Top ⟼ Hot = Ho(Top) = Top[𝒲−1]

24 / 28



Synthetic Homotopy
For any small category ℂ, the slice functor, ℂ/− ∶ ℂ → Cat uniquely determines
an adjunction:

ℂ

ℂ° ⊃ Set = ℂ̂ Cat⊥

𝑦 ℂ/−
∫ℂ

𝒩ℂ

where ∫ℂ gives the category of elements of a presheaf,
and Nℂ is the nerve functor: 𝒩ℂ(𝔻)(A) = Cat (ℂ/A → 𝔻).

Via simplicial sets, the category Cat also presents the homotopy category Hot.

Grothendieck showed this permits the study of synthetic homotopy for the
category of presheaves over any small category. [Gro83]
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Test Categories
▶ ℂ is a weak test category if the adjunction extends to an

adjoint equivalence on the localizations:

ℂ̂ Cat⊥

ℂ̂[𝒲ℂ
−1] Cat[𝒲Cat

−1] ≅ Hot⊥ ∼

∫ℂ

𝒩ℂ

▶ ℂ is a test category if it, and each of its slices, is weak test.
▶ ℂ is a strict test category it is test and the functor ℂ̂ → Hot

preserves finite products.
Idea: presheaves of test categories have “the right homotopy”,
which is preserved under products for strict test categories.
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Canonical Cube Test Categories
Theorem 3.1

▶ The canonical cube categories for theories with the structural rule of
weakening are test categories.

▶ The canonical cube categories for theories with contraction as well are
strict test categories.

▶ The canonical cube categories for theories with at least one binary
connective are strict test categories.

▶ The non-canonical cube categories for the theories of de Morgan and
boolean algebras are strict test categories.

a∖b ⋅ ′ ∨ ∧ ∨∧ ∨∧′

w t t t t t t
we t t t t t t
wec t t t t t t

Which canonical cube categories ℂ(𝑎,𝑏) are test (t) or even strict test (st).
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The bottom-right corner refers to the cube categories for de Morgan, Kleene and
boolean algebras.
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Upshot: having either the diagonal or a connection suffices for strict test.
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