Cubical Structures for Higher-Dimensional Type Theories

Ed Morehouse

October 30, 2015

- A higher-dimensional type theory depends on a notion of higher-dimensional abstract spaces.
- Many choices: globular, simplicial, cubical, opotopic, etc.
- We want abstract spaces with good topological properties as well as good combinatorial and computational properties.
- Lately, we have been thinking about cubical structure.

The Cubical Perspective

Several cubical structures have been proposed as a basis for models of higher-dimensional type theory.

We survey some of their features.

Abstract Cubes

A cube category is a symmetric monoidal category with a distinguished object, the abstract interval, I.

In a cube category, \square, for each $n \in \mathbb{N}$, we have an abstract n-dimensional cube, $[n]:=\underbrace{\mathrm{I} \otimes \cdots \otimes \mathrm{I}}_{n}$.

0-Dimensional Cube (point)

[0]

1-Dimensional Cube (interval)

[1]

2-Dimensional Cube (square)

[2]

3-Dimensional Cube (cube)

[3]

n-Dimensional Cube

???
[n]

Cubiness

We seek an equational presentation of cubes so we can describe cubes of any dimension and the relationships between them.

Cubical Sets

A cubical set is a presheaf on a cube category:

- The cubes we are interested in reside in the fibers, sorted by dimension.
- Maps between abstract cubes determine contravariant functions describing relationships between cubes.

Boundary Maps

An abstract interval has two distinguishable boundary points.
This gives us a notion of a path.

$$
\partial^{-}, \partial^{+}: \square([0] \rightarrow[1])
$$

Boundary Maps

An abstract interval has two distinguishable boundary points.
This gives us a notion of a path.

$$
\partial^{-}, \partial^{+}: \square([0] \rightarrow[1])
$$

Degeneracies

Represent the idea of a trivial path:

$$
\varepsilon: \square([1] \rightarrow[0])
$$

Boundary-Degeneracy Laws

$$
\partial^{i} \cdot \varepsilon=\operatorname{id}([0])
$$

$\square(\partial, \varepsilon)$

generators

relations

Diagonal Maps

Represent the idea of a path cutting through the middle of a square:

$$
\Delta: \square([1] \rightarrow[2])
$$

So far, the diagonal is under-specified:
we don't say how to cut through the middle of a square.

But there is still something that we know for certain: its boundary.

generator

relations

Symmetrical Diagonals

If the diagonal cuts through the square in "a straight line" then we get more laws:
diagonal-diagonal law

$$
\Delta \cdot(\Delta \otimes[1])=\Delta \cdot([1] \otimes \Delta)
$$

represents cutting through the middle of a 3 -cube.

Symmetrical Diagonals

If the diagonal cuts through the square in "a straight line" then we get more laws:
diagonal-diagonal law

$$
\Delta \cdot(\Delta \otimes[1])=\Delta \cdot([1] \otimes \Delta)
$$

represents cutting through the middle of a 3 -cube.

Symmetrical Diagonals

If the diagonal cuts through the square in "a straight line" then we get more laws:
diagonal-diagonal law

$$
\Delta \cdot(\Delta \otimes[1])=\Delta \cdot([1] \otimes \Delta)
$$

represents cutting through the middle of a 3 -cube.

Symmetrical Diagonals

Also, putting the interval in the diagonal of the square and then squishing the square back into the interval along either dimension is identity:
diagonal-degeneracy laws

$$
\Delta \cdot(\varepsilon \otimes[1])=\operatorname{id}([1])=\Delta \cdot([1] \otimes \varepsilon)
$$

$\square(\varepsilon, \Delta)$

You may recognize these as the comonoid laws:
relations

If we extend this comonoid structure naturally to all [n], then the monoidal structure becomes cartesian.

Cartesian Cubical Sets

Cartesian cubical sets have several good properties, eg:

- It is a strict test category (has the "right homotopy theory").
- Contexts of dimension variables behave structurally (admit exchange, weakening and contraction).

Reversals

Represent the idea of following a path backwards:

$$
\rho: \square([1] \rightarrow[1])
$$

$\square(\partial, \varepsilon, \rho)$

The theory $\square(\partial, \varepsilon)$ plus:
generator

relations

Connections

Represent another kind of degeneracy, identifying adjacent, rather than opposite, sides of an abstract cube.
They collapse a square to an interval, like a folding paper fan:

$$
\gamma: \square([2] \rightarrow[1])
$$

$\square(\partial, \varepsilon, \gamma)$
The theory $\square(\partial, \varepsilon)$ plus:

generator

relations
$\left(\gamma, \partial^{+}\right)$forms a monoid:

$\square(\partial, \varepsilon, \gamma)$
The theory $\square(\partial, \varepsilon)$ plus:

generator

relations
∂^{-}is an absorbing element (zero) for this monoid:

$\square(\partial, \varepsilon, \gamma)$
The theory $\square(\partial, \varepsilon)$ plus:

generator

relations
ε is a morphism for this monoid structure:

(plus boundary-degeneracy law from before)

Connections and Reversals

Using reversal, we get three more connections, one for "folding" the square at each of its corners:

Composition

Fancier structures, such as cubical groupoids, extend cubical sets with a composition structure.
E.g. $f+{ }_{x} g$:

$$
a \xrightarrow{f} b \xrightarrow{g} c
$$

E.g. $\mathrm{A}+{ }_{x} \mathrm{~B}$:

(laws available but elided)

Subdivision

In some cases, we may be able to subdivide cubes in a canonical way.
E.g. padding:

$$
a \xrightarrow{*} a \xrightarrow{f} b \xrightarrow{*} b
$$

Box Filling

Cubical sets with the box-filling property are called "Kan":

Kan cubical sets that are uniform with respect to degeneracies are important for interpreting higher-dimensional type theories.

Constructive Box Filling

With reversals and connections, we can constructively fill padded boxes in a cubical set.

A right adjoint to subdivision then lets us fill boxes in the fibrant replacement of a cubical set.

Thanks!

