Cubical Structures for Higher-Dimensional Type Theories

Ed Morehouse

October 30, 2015

- A higher-dimensional type theory depends on a notion of higher-dimensional abstract spaces.
- Many choices: globular, simplicial, cubical, opotopic, etc.
- We want abstract spaces with good topological properties as well as good combinatorial and computational properties.
- Lately, we have been thinking about *cubical* structure.

The Cubical Perspective

Several cubical structures have been proposed as a basis for models of higher-dimensional type theory.

We survey some of their features.

Abstract Cubes

A cube category is a symmetric monoidal category with a distinguished object, the abstract interval, I.

In a cube category, \Box , for each $n \in \mathbb{N}$, we have an abstract *n*-dimensional cube, $[n] := \underbrace{I \otimes \cdots \otimes I}_{n}$.

0-Dimensional Cube (point)

1-Dimensional Cube (interval)

2-Dimensional Cube (square)

3-Dimensional Cube (cube)

n-Dimensional Cube

[n]

Cubiness

We seek an equational presentation of cubes so we can describe cubes of any dimension and the relationships between them.

Cubical Sets

A cubical set is a *presheaf* on a cube category:

- The cubes we are interested in reside in the *fibers*, sorted by dimension.
- Maps between abstract cubes determine *contravariant* functions describing relationships between cubes.

Boundary Maps

An abstract interval has two distinguishable boundary points. This gives us a notion of a path.

 $\partial^-\,,\partial^+:\square\left([0]\to[1]\right)$

Boundary Maps

An abstract interval has two distinguishable boundary points. This gives us a notion of a path.

 $\partial^-\,,\partial^+:\square\left([0]\to[1]\right)$

Degeneracies

Represent the idea of a trivial path:

 $\epsilon: \square\left([1] \to [0]\right)$

Boundary-Degeneracy Laws

$$\partial^i \cdot \varepsilon = \mathrm{id}([0])$$

 $\square(\partial\,,\epsilon)$

Diagonal Maps

Represent the idea of a path cutting through the middle of a square:

 $\Delta: \square \left([1] \rightarrow [2] \right)$

$\square(\partial\;,\Delta)$

So far, the diagonal is under-specified:

we don't say *how* to cut through the middle of a square.

But there is still something that we know for certain: its boundary.

generator

=

relations

Symmetrical Diagonals

If the diagonal cuts through the square in "a straight line" then we get more laws:

diagonal-diagonal law

$$\Delta \cdot (\Delta \otimes [1]) = \Delta \cdot ([1] \otimes \Delta)$$

represents cutting through the middle of a 3-cube.

Symmetrical Diagonals

If the diagonal cuts through the square in "a straight line" then we get more laws:

diagonal-diagonal law

$$\Delta \cdot (\Delta \otimes [1]) = \Delta \cdot ([1] \otimes \Delta)$$

represents cutting through the middle of a 3-cube.

Symmetrical Diagonals

If the diagonal cuts through the square in "a straight line" then we get more laws:

diagonal-diagonal law

$$\Delta \cdot (\Delta \otimes [1]) = \Delta \cdot ([1] \otimes \Delta)$$

represents cutting through the middle of a 3-cube.

Also, putting the interval in the diagonal of the square and then squishing the square back into the interval along either dimension is identity:

diagonal-degeneracy laws

$$\Delta \cdot (\epsilon \otimes [1]) = \mathrm{id}([1]) = \Delta \cdot ([1] \otimes \epsilon)$$

$\square(\epsilon\;,\Delta)$

You may recognize these as the *comonoid* laws:

relations

If we extend this comonoid structure *naturally* to all [n], then the monoidal structure becomes **cartesian**.

Cartesian cubical sets have several good properties, eg:

- It is a strict test category (has the "right homotopy theory").
- Contexts of dimension variables behave structurally (admit exchange, weakening and contraction).

Reversals

Represent the idea of following a path backwards:

 $\rho: \square\left([1] \to [1]\right)$

$\square(\partial\;, \epsilon\;, \rho)$

The theory $\Box(\partial\;,\epsilon)$ plus:

generator

relations

Connections

Represent another kind of degeneracy, identifying adjacent,

rather than opposite, sides of an abstract cube.

They collapse a square to an interval, like a folding paper fan:

 $\gamma: \square\left([2] \to [1]\right)$

generator

relations $(\gamma \ , \partial^+) \text{ forms a } \textit{monoid}:$

generator

relations

 ∂^- is an *absorbing element* (zero) for this monoid:

generator

relations

 ϵ is a *morphism* for this monoid structure:

(plus boundary-degeneracy law from before)

Connections and Reversals

Using reversal, we get three more connections, one for "folding" the square at each of its corners:

Composition

Fancier structures, such as **cubical groupoids**, extend cubical sets with a **composition structure**.

(laws available but elided)

Subdivision

In some cases, we may be able to subdivide cubes in a canonical way.

E.g. padding:

$$a \xrightarrow{*} a \xrightarrow{f} b \xrightarrow{*} b$$

=	А	=

Box Filling

Cubical sets with the box-filling property are called "Kan":

$$\forall f \downarrow \downarrow h \exists f \downarrow A \downarrow h$$

Kan cubical sets that are *uniform* with respect to degeneracies are important for interpreting higher-dimensional type theories.

Constructive Box Filling

With reversals and connections, we can constructively fill padded boxes in a cubical set.

A right adjoint to subdivision then lets us fill boxes in the **fibrant replacement** of a cubical set.

Thanks!

