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A higher-dimensional type theory depends on a notion of
higher-dimensional abstract spaces.

Many choices: globular, simplicial, cubical, opotopic, etc.

We want abstract spaces with good topological properties

as well as good combinatorial and computational properties.

Lately, we have been thinking about cubical structure.
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The Cubical Perspective

Several cubical structures have been proposed
as a basis for models of higher-dimensional type theory.

We survey some of their features.
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Abstract Cubes

A cube category is a symmetric monoidal category
with a distinguished object, the abstract interval, 1.

In a cube category, [], for each n € N, we have an
abstract n-dimensional cube, [n] :=1® - ® L
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0-Dimensional Cube (point)
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1-Dimensional Cube (interval)
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2-Dimensional Cube (square)




3-Dimensional Cube (cube)
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n-Dimensional Cube
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Cubiness

We seek an equational presentation of cubes
so we can describe cubes of any dimension
and the relationships between them.
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Cubical Sets

A cubical set is a presheaf on a cube category:

(0] [1] 2]

» The cubes we are interested in reside in the fibers, sorted by
dimension.

» Maps between abstract cubes determine contravariant functions
describing relationships between cubes.
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Boundary Maps

An abstract interval has two distinguishable boundary points.
This gives us a notion of a path.

0,07 (0] — [1])

12/36



Boundary Maps

An abstract interval has two distinguishable boundary points.
This gives us a notion of a path.

0,07 (0] — [1])
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Degeneracies

Represent the idea of a trivial path:
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Boundary-Degeneracy Laws

9 - e = id([0])

K €
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0(0,¢)

generators

relations
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Diagonal Maps
Represent the idea of a path cutting through the middle of a square:

A:O([1] —[2])
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(0, A)

So far, the diagonal is under-specified:

we don’t say how to cut through the middle of a square.

But there is still something that we know for certain: its boundary.

generator

relations
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Symmetrical Diagonals

If the diagonal cuts through the square in “a straight line”
then we get more laws:

diagonal-diagonal law

A-(A(l)=A-(1JeA)

represents cutting through the middle of a 3-cube.
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Symmetrical Diagonals

Also, putting the interval in the diagonal of the square
and then squishing the square back into the interval
along either dimension is identity:

diagonal-degeneracy laws

A-(e@[l]) =id([1]) =A-([®¢)
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O(e, A)

You may recognize these as the comonoid laws:

relations

If we extend this comonoid structure naturally to all [n],
then the monoidal structure becomes cartesian.
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Cartesian Cubical Sets

Cartesian cubical sets have several good properties, eg:

» ltis a strict test category (has the “right homotopy theory”).

» Contexts of dimension variables behave structurally
(admit exchange, weakening and contraction).
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Reversals

Represent the idea of following a path backwards:

p O[] = 1))

b#a a#b
e
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O(0,e,p)
The theory [J(0 , €) plus:

generator

relations
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Connections
Represent another kind of degeneracy, identifying adjacent,
rather than opposite, sides of an abstract cube.
They collapse a square to an interval, like a folding paper fan:

v O([2] = [1])
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0@, e ,)
The theory [J(0 , €) plus:
generator

relations
(v, 0%") forms a monoid:
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0@, e ,)
The theory [J(0 , €) plus:
generator

relations
0~ is an absorbing element (zero) for this monoid:

@ 5 @
3 D
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0@, e ,)
The theory [J(0 , €) plus:
generator

relations
€ is a morphism for this monoid structure:

(plus boundary-degeneracy law from before)

b
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Connections and Reversals

Using reversal, we get three more connections, one for “folding” the square
at each of its corners:
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a%* a a%* a
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Composition

Fancier structures, such as cubical groupoids, extend cubical sets
with a composition structure.

Eg. f+, 9

Eg. A+, B:

(laws available but elided)
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Subdivision

In some cases, we may be able to subdivide cubes in a canonical way.

E.g. padding:
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Box Filling

Cubical sets with the box-filling property are called “Kan”:

AN
v fl lh 3 fl A lh
9 9

Kan cubical sets that are uniform with respect to degeneracies
are important for interpreting higher-dimensional type theories.
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Constructive Box Filling

With reversals and connections, we can constructively fill

padded boxes in a cubical set.

A right adjoint to subdivision then lets us fill boxes
in the fibrant replacement of a cubical set.
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Thanks!
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