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▶ A higher-dimensional type theory depends on a notion of
higher-dimensional abstract spaces.

▶ Many choices: globular, simplicial, cubical, opotopic, etc.
▶ We want abstract spaces with good topological properties

as well as good combinatorial and computational properties.
▶ Lately, we have been thinking about cubical structure.
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The Cubical Perspective

Several cubical structures have been proposed
as a basis for models of higher-dimensional type theory.

We survey some of their features.
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Abstract Cubes

A cube category is a symmetric monoidal category
with a distinguished object, the abstract interval, I.

In a cube category, □, for each 𝑛 ∈ ℕ, we have an
abstract 𝑛-dimensional cube, [𝑛] ≔ I ⊗ ⋯ ⊗ I⏟

𝑛
.
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0-Dimensional Cube (point)

[0]

●
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1-Dimensional Cube (interval)

[1]

● ●
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2-Dimensional Cube (square)

[2]

●

●

●

●
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3-Dimensional Cube (cube)

[3]

●

●

●

●

●

●

●

●
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𝑛-Dimensional Cube

[𝑛]

???

⋯
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Cubiness

We seek an equational presentation of cubes
so we can describe cubes of any dimension
and the relationships between them.
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Cubical Sets
A cubical set is a presheaf on a cube category:

[0] [1] [2] ⋯

𝑎 𝑏
𝑐

𝑑

𝑓
𝑔

ℎ

A
B

▶ The cubes we are interested in reside in the fibers, sorted by
dimension.

▶ Maps between abstract cubes determine contravariant functions
describing relationships between cubes.
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Boundary Maps
An abstract interval has two distinguishable boundary points.
This gives us a notion of a path.

∂− , ∂+ ∶ □ ([0] → [1])

[0] [1]
● ● ●

𝑎 𝑏 𝑎 𝑏𝑓

∂−
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Degeneracies
Represent the idea of a trivial path:

ε ∶ □ ([1] → [0])

[1] [0]
● ● ●

𝑎𝑎 𝑎∗

ε
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Boundary-Degeneracy Laws

∂𝑖 ⋅ ε = id([0])

[0] [1] [0]

𝑎𝑎 𝑎∗𝑎

∂𝑖 ε

id
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□(∂ , ε)

generators

∂−

,
∂+

, ε

relations

∂−

ε
= = ∂+

ε
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Diagonal Maps
Represent the idea of a path cutting through the middle of a square:

∆ ∶ □ ([1] → [2])

[1] [2]
● ●

●

●

●

●

𝑎

𝑐

𝑏

𝑑
A𝑎 𝑑∆A

∆
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□(∂ , ∆)
So far, the diagonal is under-specified:
we don’t say how to cut through the middle of a square.

But there is still something that we know for certain: its boundary.

generator

∆

relations

∂𝑖

∆
= ∂𝑖∂𝑖
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Symmetrical Diagonals

If the diagonal cuts through the square in “a straight line”
then we get more laws:

diagonal-diagonal law
∆ ⋅ (∆ ⊗ [1]) = ∆ ⋅ ([1] ⊗ ∆)

represents cutting through the middle of a 3-cube.
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Symmetrical Diagonals

Also, putting the interval in the diagonal of the square
and then squishing the square back into the interval
along either dimension is identity:

diagonal-degeneracy laws

∆ ⋅ (ε ⊗ [1]) = id([1]) = ∆ ⋅ ([1] ⊗ ε)
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□(ε , ∆)
You may recognize these as the comonoid laws:

relations

∆

∆
= ∆

∆

∆

ε
= = ∆

ε

If we extend this comonoid structure naturally to all [𝑛],
then the monoidal structure becomes cartesian.

23 / 36



Cartesian Cubical Sets

Cartesian cubical sets have several good properties, eg:

▶ It is a strict test category (has the “right homotopy theory”).
▶ Contexts of dimension variables behave structurally

(admit exchange, weakening and contraction).
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Reversals
Represent the idea of following a path backwards:

ρ ∶ □ ([1] → [1])

[1] [1]
● ● ● ●

𝑎 𝑏𝑓𝑏 𝑎!𝑓

ρ
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□(∂ , ε , ρ)
The theory □(∂ , ε) plus:

generator

ρ

relations

ρ

ρ
= ,

ρ

ε
=

ε

∂−

ρ
= ∂+

, ∂+

ρ
= ∂−
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Connections
Represent another kind of degeneracy, identifying adjacent,
rather than opposite, sides of an abstract cube.
They collapse a square to an interval, like a folding paper fan:

γ ∶ □ ([2] → [1])

[2] [1]

● ●

● ● ● ●

𝑎 𝑏𝑓
𝑎 𝑎

𝑎 𝑏

∗

𝑓

∗ 𝑓

γ
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□(∂ , ε , γ)
The theory □(∂ , ε) plus:

generator

γ

relations
(γ , ∂+) forms a monoid :

γ

γ
=

γ

γ

γ
∂+

= =
γ

∂+
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□(∂ , ε , γ)
The theory □(∂ , ε) plus:

generator

γ

relations
∂− is an absorbing element (zero) for this monoid:

γ
∂−

= ε
∂−

=
γ

∂−
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□(∂ , ε , γ)
The theory □(∂ , ε) plus:

generator

γ

relations
ε is a morphism for this monoid structure:

γ

ε
= ε ε

(plus boundary-degeneracy law from before)
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Connections and Reversals
Using reversal, we get three more connections, one for “folding” the square
at each of its corners:

𝑎 𝑎

𝑎 𝑏

∗

𝑓

∗ 𝑓γ++(𝑓)

𝑎 𝑎

𝑏 𝑎

∗

!𝑓

𝑓 ∗γ−+(𝑓)

𝑎 𝑏

𝑎 𝑎

𝑓

∗

∗ !𝑓γ+−(𝑓)

𝑏 𝑎

𝑎 𝑎

!𝑓

∗

!𝑓 ∗γ−−(𝑓)

31 / 36



Composition
Fancier structures, such as cubical groupoids, extend cubical sets
with a composition structure.

E.g. 𝑓 +𝑥 𝑔:

𝑎 𝑏 𝑐𝑓 𝑔

E.g. A +𝑥 B:
𝑎 𝑏 𝑐

𝑑 𝑒 𝑓
A B

(laws available but elided)
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Subdivision

In some cases, we may be able to subdivide cubes in a canonical way.

E.g. padding:

𝑎 𝑎 𝑏 𝑏∗ 𝑓 ∗

A

||

=

||

=

□

□□

□
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Box Filling

Cubical sets with the box-filling property are called “Kan”:

∀ 𝑓
𝑔

ℎ ∃ 𝑓
𝑔

ℎ

𝑒

A

Kan cubical sets that are uniform with respect to degeneracies
are important for interpreting higher-dimensional type theories.
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Constructive Box Filling

With reversals and connections, we can constructively fill
padded boxes in a cubical set.

||

||

└

||

┘

||

□□

||

A right adjoint to subdivision then lets us fill boxes
in the fibrant replacement of a cubical set.
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Thanks!

000

001

010

011

100

101

110

111
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