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The Big Picture

What does “⊣” have to do with “⊢”?

..

..category theory

..proof theory

..logic programming

.

universal constructions

.

proof search strategies
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Act 1: in which the magician shows you something ordinary
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Derivation Systems in Proof Theory
Natural Deduction

Sequent Calculus

Constructions in Category Theory
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Derivation Trees

In proof theory formalized inferences may be encoded as derivation trees,
constructed inductively from primitive inference rules:

collection of premises
P ⋯ P

Q
single conclusion

[rule name]

Terminology:

An inference rule with no premises is an axiom.

The conclusion at the root of a derivation is its “goal” or end-formula.

The premises at the leaves are its “assumptions” or frontier.

A derivation with empty frontier is a proof.

A derivation with no inferences is an identity derivation.
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Gentzen Systems

In the 1930s, Gentzen devised two types of derivation system to formalize
logical proofs [Gen35]:

Natural Deduction
A one-dimensional system:
rules represent inferences between propositions.

Sequent Calculus
A two-dimensional system:
rules represent inferences between inferences between propositions.
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Intuitionistic Natural Deduction (NJ)

Each logical connective has a set of introduction and elimination rules:

introduction rules
have the connective principal in the conclusion,

determine from what evidence such a proposition may be inferred:
immediate evidence
P ⋯ P

Q(∗) ∗+

elimination rules
have the connective principal in the major premise,

determine what consequences may be inferred from such a proposition:
major premise
P(∗)

minor premises
P ⋯ P
Q

immediate consequence

∗−
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Intuitionistic Natural Deduction (NJ)

Each logical connective has a set of introduction and elimination rules:

introduction rules
have the connective principal in the conclusion,

determine from what evidence such a proposition may be inferred:

example:
A B
A ∧ B ∧+

elimination rules
have the connective principal in the major premise,

determine what consequences may be inferred from such a proposition:

example:
A ∧ B
A

∧− A ∧ B
B

∧−
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Hypothetical Judgement

Part of the meta-theory of natural deduction is hypothetical judgement, which
allows rules to have assumptions that are local to certain subderivations.

example:
A ∨ B

[A]
𝒟
C

[B]
𝒟
C

C ∨−

These local assumptions don’t enter the frontier .

The inference rules of natural deduction are given in appendix 1.
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Harmony of the Connectives

The inference rules for the connectives are finely balanced, possessing a
harmony of two parts [Dum91]:

local soundness

elimination rules are no stronger than introduction rules
“you can’t get out more than you put in”,
witnessed by local reductions that remove unnecessary detours,
determines a computation principle for the connective (β-reduction).

local completeness

elimination rules are no weaker than introduction rules
“you can get back out all that you put in”,
witnessed by local expansions that introduce canonical forms,
determines a representation principle for the connective (η-expansion).

This harmony acts as an information-theoretic conservation law.
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Harmony of the Connectives

The inference rules for the connectives are finely balanced, possessing a
harmony of two parts [Dum91]:

local soundness

example:

𝒟
A

𝒟
A

A ∧ A ∧+

A
∧− ∧⟼

𝒟
A

local completeness

example:
ℰ

A ∧ B ∧⟼

ℰ
A ∧ B
A

∧−
ℰ

A ∧ B
B

∧−

A ∧ B ∧+

The derivation conversions witnessing harmony are given in appendix 1.
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Unique Normalization of Derivations

Because of hypothetical judgement we also need another kind of
derivation transformation, called a permutation conversion for the
connectives {∨ , ∃ , ⊥} (see appendix 1).

Under the relation on derivations generated by the local reductions and
permutation conversions, every derivation has a unique normal form.
[Pra65; Gir72]

Locally expanding assumptions yields the β-normal–η-long forms.
These are the canonical normal forms for natural deduction derivations.
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Intuitionistic Sequent Calculus (LJ)

A sequent is an expression of the form,

Γ ⟹ A

Γ is a collection of propositions, called the “context” or antecedent.

A is a single proposition, called the “goal” or succedent.

Intuitively, this sequent expresses the inference of A from Γ.

There are of two kinds of inference rules: structural and logical.

The structural rules tell us about the meta-theory of the logic by determining
how contexts affect inference.
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Sequent Calculus Logical Rules

Each connective has a set of right and left logical rules. These act on a
proposition in the conclusion with the given connective principal:

right rules
act on the succedent of the conclusion.

Γ ⟹ A ⋯ Γ ⟹ A
Γ ⟹ A(∗) ∗R

left rules
act on a member of the antecedent of the conclusion.

Γ ⟹ A ⋯ Γ ⟹ A
Γ , A(∗) ⟹ B ∗L

The proposition A(∗) is the principal formula of the rule.
It is the only formula that is decomposed by the rule.
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Sequent Calculus Logical Rules

Each connective has a set of right and left logical rules. These act on a
proposition in the conclusion with the given connective principal:

right rules
act on the succedent of the conclusion.

example:
Γ , A ⟹ B
Γ ⟹ A⊃ B ⊃R

left rules
act on a member of the antecedent of the conclusion.

example:
Γ ⟹ A Γ , B ⟹ C

Γ , A ⊃ B ⟹ C ⊃L

The rules of sequent calculus are given in appendix 2.
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Sequent Calculus and Natural Deduction
These derivation systems are closely related:

Sequent calculus right
left rules correspond respectively to

natural deduction introduction
elimination rules.

This correspondence is defined by the Prawitz translation [Pra65].

Sequent calculus proofs are instructions for building a natural deduction
derivations.

So why use sequent calculus?

It is better for proof search:

context is local (i.e. in the antecedents), so derivations may be constructed
unilaterally, from root to leaves.
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Derivation Systems in Proof Theory

Constructions in Category Theory
Bicartesian Closed Categories

Indexed Categories

Adjunctions
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Bicartesian Closed Categories

A bicartesian closed category is one with:

finite products

finite coproducts

exponentials

cartesian product: terminal object:

..

. .. .

.. ..× ..

.....
⟨ , ⟩

..

..

..

. !

A category with just finite products is a cartesian category.
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Bicartesian Closed Categories

A bicartesian closed category is one with:

finite products

finite coproducts

exponentials

binary coproduct: initial object:

..

.. .. ..

. .. .

.....[ , ] ..

..

..

. ¡
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Bicartesian Closed Categories

A bicartesian closed category is one with:

finite products

finite coproducts

exponentials

exponential (currying):

..

.. ..⊃

..× ..

.

. ..( ⊃ ) ×

....

×

( ⊃ is also written “[ , ]” or “ ”)
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Bicartesian Closed Categories

A bicartesian closed category is one with:

finite products

finite coproducts

exponentials

The 2-category of bicartesian closed categories, functors and natural transfor-
mations is called “BCC”.

BCC functors preserve BCC structure.
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Indexed Categories

An indexed category is a contravariant functor from a base category to a
2-category of categories:

P ∶ 𝕏° ⟶ 𝒞
taking:

each object of the base to its fiber

each arrow of the base to a reindexing functor

....𝒞 ∶ ...

( )

. ...

( )

..𝕏 ∶ .. . ..
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Indexed Categories

An indexed category is a contravariant functor from a base category to a
2-category of categories:

P ∶ 𝕏° ⟶ 𝒞
taking:

each object of the base to its fiber

each arrow of the base to a reindexing functor

....𝒞 ∶ ...

( )

. ...

( )

..𝕏 ∶ .. . ..

..

∗ ≔ ( )



the pledge the turn the prestige derivation systems categorical constructions

Indexed Categories

An indexed category is a contravariant functor from a base category to a
2-category of categories:

P ∶ 𝕏° ⟶ 𝒞
taking:

each object of the base to its fiber

each arrow of the base to a reindexing functor

We will be interested in indexed bicartesian closed categories with cartesian
base:

P ∶ 𝕏° ⟶ BCC
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Adjunctions

An adjunction is an extremely general categorical construction with several
equivalent characterizations.

Adjoints are everywhere.

- Saunders Mac Lane [Mac98]
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Adjunctions by Universal Properties
Antiparallel functors F ∶ 𝔸 ⟶ 𝔹 and G ∶ 𝔹 ⟶ 𝔸 form an adjunction “F ⊣ G”
with F the left adjoint and G the right adjoint if:

universal property of the counit
There is a natural transformation, called the counit, ε ∶ G ⋅ F ⟶ id𝔹
such that:

∀ 𝑔 ∶ 𝔹 (F(A) → B) . ∃! 𝑔♭ ∶ 𝔸(A → G(B)) . F(𝑔♭) ⋅ ε(B) = 𝑔

i.e.

..

..𝔸 ∶ .. ..( ) .

..𝔹 ∶ ..( ) .. .

. . ..( ∘ )( ) .

.

♭

..

( )

.

( ♭)
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Adjunctions by Universal Properties
Antiparallel functors F ∶ 𝔸 ⟶ 𝔹 and G ∶ 𝔹 ⟶ 𝔸 form an adjunction “F ⊣ G”
with F the left adjoint and G the right adjoint if:

universal property of the unit
There is a natural transformation, called the unit, η ∶ id𝔸 ⟶ F ⋅ G
such that:

∀ 𝑓 ∶ 𝔸 (A → G(B)) . ∃! 𝑓♯ ∶ 𝔹(F(A) → B) . η(A) ⋅ G(𝑓♯) = 𝑓

i.e.

..

. ..( ∘ )( ) . .

..𝔸 ∶ .. ..( ) .

..𝔹 ∶ ..( ) .. .

..

♯

.

( )

.

( ♯)
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Adjunction Summary Diagrams
Because these characterizations are equivalent, we can present an adjunction
using a summary diagram:

..

. ..( ∘ )( ) . .

..𝔸 ∶ .. ..( ) .

..𝔹 ∶ ..( ) .. .

. . ..( ∘ )( ) .

.
♭

.
♯

.

( )

.

( )

.

( ♯)

.

( ♭)

..

Arrows related by the bijection are called adjoint complements.
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Notable Adjoint Complements

We record for later use:

the adjoint complement of a counit and unit component:

..
..𝔸 ∶ ..( ) . ..( )

..𝔹 ∶ ..( ∘ )( ) . ..
.. ..

..𝔸 ∶ .. . ..( ∘ )( )

..𝔹 ∶ ..( ) . ..( )
..

the naturality of the adjoint complement bijection in the domain and
codomain coordinate:

..
..𝔸 ∶ .. . .. . ..( )

..𝔹 ∶ ..( ) . ..( ) . ..
..

♭

.

( )

. ..
..𝔸 ∶ .. . ..( ) . ..( )

..𝔹 ∶ ..( ) . .. . ..
..

( )

.

♯

.
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Act 2: in which the magician takes the ordinary something and makes it do
something extraordinary
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Categorical Logic
Interpreting Propositional Logic

Interpreting the Term Language

Interpreting Predicates

Interpreting Quantification

Hyperdoctrine Interpretations of First-Order Logic

Natural Deduction by Adjunction
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Categorical Logic

The basic idea:

We give an interpretation of a logical language ℒ in a category ℂ:

⟦−⟧ ∶ ℒ ⟶ ℂ

by sending propositions to objects and valid inferences to arrows between
them:

Γ ⊢ A ⟼ ⟦𝑖⟧ ∶ ℂ(⟦Γ⟧ → ⟦A⟧)

To determine what sort of category ℂ should be, we examine the structure of ℒ
and look for universal constructions to interpret its features.
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Interpreting Propositional Connectives

Propositional logic is freely generated from atomic propositions by the
propositional connectives:

{∧ , ∨ , ⊤ , ⊥ , ⊃}

A well-known lattice-theoretic model is that of a Heyting algebra
(i.e. bicartesian closed poset).

Allowing parallel arrows gives an interpretation of propositional
connectives in bicartesian closed categories:

connective interpretation
conjunction (∧) cartesian product (×)
disjunction (∨) coproduct (+)

truth (⊤) terminal object (1)
falsehood (⊥) initial object (0)

implication (⊃) exponential (⊃)
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Interpreting Propositional Contexts

The logical assumptions of an inference are its propositional context.

Inferences may have multiple (including possibly zero) assumptions.

Assumptions may be used more than once, or not at all.

This suggests that we define the interpretation of propositional contexts
inductively by finite products:

⟦
empty context

∅ ⟧ ≔ 1
⟦ Γ , A

extended context
⟧ ≔ ⟦Γ⟧ × ⟦A⟧
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Interpreting Types

For first-order logic we must introduce terms and predicates as well.

We want our language of terms to be typed .

We begin from an arbitrary set of atomic types, 𝒯.

For simplicity, these are the only types we consider.

An interpretation of atomic types in a cartesian category ℂ is any function
mapping atomic types to objects: for X ∈ 𝒯,

⟦X⟧ ∶ ℂ
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Interpreting Typing Contexts
A typing context is a sequence of types, or equivalently, a collection of distinct
typed variables1:

Φ = 𝑥 ∶ X , ⋯ , 𝑥 ∶ X

We define the interpretation of typing contexts inductively by finite
products:

⟦
empty context

∅ ⟧ ≔ 1
⟦ Φ , 𝑥 ∶ X

extended context
⟧ ≔ ⟦Φ⟧ × ⟦X⟧𝒯

We can forget a variable in scope using a single omission:

�̂� ∶ Φ , 𝑥 ∶ X ⟼ Φ

It is interpreted by a complement-projection:

⟦�̂�⟧ ≔ π ∶ ⟦Φ , 𝑥 ∶ X⟧ ⟶ ⟦Φ⟧

1up to renaming
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Interpreting Function Symbols
A signature for a typed term language has a collection of typed function
symbols, ℱ:

𝑓 ∈ ℱ(
argument context
Y , ⋯ , Y ; X

result type
)

Applying 𝑓 to terms of types Y⃗ yields a term of type X.

An interpretation of function symbols in a cartesian category is any function
mapping function symbols to arrows in the corresponding hom sets:

⟦𝑓⟧ ∶ ⟦Y , ⋯ , Y ⟧𝒯 ⟶ ⟦X⟧𝒯

Terms may be open, i.e. contain free variables.

We express this with a term in context:

Φ
typing context

|
term
𝑡 ∶ X

type
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Interpreting Terms in Context
We define the interpretation of terms inductively by precomposition.

⟦Φ | 𝑡 ∶ X⟧ ∶ ⟦Φ⟧𝒯 ⟶ ⟦X⟧𝒯
lifted variable: for variable 𝑥 ∉ Φ,

⟦Φ , 𝑥 ∶ X | 𝑥 ∶ X⟧ ≔ π

applied function symbol: for function symbol 𝑓 ∈ ℱ(Y , ⋯ , Y ; X)
and terms Φ | 𝑡 ∶ Y , ⋯ , 𝑡 ∶ Y ,

⟦Φ | 𝑓(𝑡 , ⋯ , 𝑡 ) ∶ X⟧ ≔ ⟨⟦𝑡 ⟧ , ⋯ , ⟦𝑡 ⟧⟩ ⋅ ⟦𝑓⟧ℱ

context extension: for term Φ | 𝑡 ∶ X and “dummy” variable 𝑥 ∉ Φ,
⟦Φ , 𝑥 ∶ X | 𝑡 ∶ X⟧ ≔ ⟦�̂�⟧𝒯 ⋅ ⟦𝑡⟧

substitution: for terms Φ , 𝑦 ∶ Y | 𝑡 ∶ X and Φ | 𝑠 ∶ Y,
⟦Φ | 𝑡[𝑦↦𝑠] ∶ X⟧ ≔ ⟦ [𝑦↦𝑠] ⟧ ⋅ ⟦𝑡⟧

where we define the interpretation of a single substitution as:
⟦ [𝑦↦𝑠] ⟧ ≔ ⟨id⟦ ⟧𝒯 , ⟦𝑠⟧⟩
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Interpreting Relation Symbols
A signature for a typed predicate language has a collection of typed relation
symbols, ℛ:

R ∈ ℛ(
argument context
X , ⋯ , X )

Applying R to terms of types X⃗ yields an atomic proposition or predicate.

An interpretation of relation symbols in an indexed category P is any function
mapping relation symbols to objects in the corresponding fibers:

⟦R⟧ ∶ P(⟦X , ⋯ , X ⟧𝒯)

Since terms may be open, propositions may be too.

We express this with a proposition in context:

Φ
typing context

|
proposition

A prop
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Interpreting Predicates in Context
We define the interpretation of predicates inductively by reindexing.

⟦Φ | A prop⟧ ∶ P(⟦Φ⟧𝒯)

applied relation symbol: for relation symbol R ∈ ℛ(Y , ⋯ , Y )
and terms Φ | 𝑡 ∶ Y , ⋯ , 𝑡 ∶ Y ,

⟦Φ | R(𝑡 , ⋯ , 𝑡 ) prop⟧ ≔ ⟨⟦𝑡 ⟧ℱ , ⋯ , ⟦𝑡 ⟧ℱ⟩∗ (⟦R⟧ℛ)

context extension: for predicate Φ | A prop and “dummy” variable 𝑥 ∉ Φ,

⟦Φ , 𝑥 ∶ X | A prop⟧ ≔ ⟦�̂�⟧∗𝒯 (⟦A⟧)

substitution: for predicate Φ , 𝑦 ∶ Y | A prop and term Φ | 𝑠 ∶ Y,

⟦Φ | A[𝑦↦𝑠] prop⟧ ≔ ⟦ [𝑦↦𝑠] ⟧∗ℱ (⟦A⟧)

The reindexing arrow is the same one precomposed to interpret terms.
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Interpreting Quantifiers

If an indexed category has adjoints for reindexing by projections:

Σπ ⊣ π∗ ⊣ Ππ

then we may use them as the interpretation of quantifiers:

⟦∃𝑥⟧ ≔ Σπ ⟦∀𝑥⟧ ≔ Ππ

....BCC ∶ ...

( )

. ...

( × )

.

..ℂ ∶ .. . ..× .

... ∗....
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Interpreting Quantifiers

If an indexed category has adjoints for reindexing by projections:

Σπ ⊣ π∗ ⊣ Ππ

then we may use them as the interpretation of quantifiers:

⟦∃𝑥⟧ ≔ Σπ ⟦∀𝑥⟧ ≔ Ππ

....BCC ∶ ...

(⟦ ⟧)

. ...

(⟦ , ∶ ⟧)

.

..ℂ ∶ ..⟦ ⟧ . ..⟦ , ∶ ⟧ .

..

⟦ ̂⟧

.⟦ ̂⟧∗.

⟦∃ ⟧

.

⟦∀ ⟧

..
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Quantifiers and Substitution

In logic, the quantifiers–like the propositional connectives–are compatible with
(capture-avoiding) substitution:

(∀𝑥 ∶ X . A)[𝑦↦𝑡] = ∀𝑥 ∶ X . (A[𝑦↦𝑡])
(∃𝑥 ∶ X . A)[𝑦↦𝑡] = ∃𝑥 ∶ X . (A[𝑦↦𝑡])

In order for their interpretations to have this property, we must impose on the
Beck-Chevalley condition:

..

..× ..× ..( × ) ..( × )

.. .. ..( ) ..( )

..

×

...

∗

.

( × )∗

. Q. Q.
⌟

.⟹

for Q∈ {Π , Σ}.
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Quantifiers and Substitution

In logic, the quantifiers–like the propositional connectives–are compatible with
(capture-avoiding) substitution:

(∀𝑥 ∶ X . A)[𝑦↦𝑡] = ∀𝑥 ∶ X . (A[𝑦↦𝑡])
(∃𝑥 ∶ X . A)[𝑦↦𝑡] = ∃𝑥 ∶ X . (A[𝑦↦𝑡])

In order for their interpretations to have this property, we must impose on the
Beck-Chevalley condition:

..

..⟦ , ∶ ⟧ ..⟦ , ∶ , ∶ ⟧ ..(⟦ , ∶ ⟧) ..(⟦ , ∶ , ∶ ⟧)

..⟦ ⟧ ..⟦ , ∶ ⟧ ..(⟦ ⟧) ..(⟦ , ∶ ⟧)

.

⟦ [ ↦ ] ⟧

.

⟦ [ ↦ ] ⟧

.⟦ ̂⟧ .⟦ ̂⟧ .

⟦ [ ↦ ] ⟧∗

.

⟦ [ ↦ ] ⟧∗

. ⟦ Q⟧. ⟦ Q⟧.
⌟

.⟹

for Q∈ {∀ , ∃}.
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Interpreting First-Order Logic

We now have all the pieces we need to interpret first-order logic in categories.

A hyperdoctrine is an indexed bicartesian closed category over a
cartesian base with adjoints for reindexing by projections that satisfy the
Beck-Chevalley condition [Law69].

An interpretation of a typed first-order logical language ℒ with
signature (𝒯 , ℱ , ℛ) in a hyperdoctrine P ∶ ℂ° ⟶ BCC is determined by
⟦−⟧𝒯, ⟦−⟧ℱ and ⟦−⟧ℛ together with the given interpretations of the
propositional connectives and quantifiers.

We are especially interested in freely-generated interpretations.
These have only those objects, arrows and equations required by the
defining categorical constructions. In this case, we write:

Propℒ ∶ Typeℒ° ⟶ BCC

and suppress the interpretation brackets, “⟦−⟧”.
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Categorical Logic

Natural Deduction by Adjunction
Inference Rules

Derivation Conversions

Genericity of Free Hyperdoctrine Semantics
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The Connectives by Adjunction

All of the universal constructions interpreting the connectives of intuitionistic
first-order logic are definable by adjunctions:

for the diagonal functor ∆ ∶ ℂ ⟶ ℂ × ℂ,

−+− ⊣ ∆ ⊣ − × −
for the unique functor ! ∶ ℂ ⟶ 𝟙,

0 ⊣ ! ⊣ 1
for any B ∶ ℂ,

− × B ⊣ B ⊃ −
for a projection π,

Σπ ⊣ π∗ ⊣ Ππ
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The Connectives by Adjunction

All of the universal constructions interpreting the connectives of intuitionistic
first-order logic are definable by adjunctions:

for the diagonal functor ∆ ∶ ℂ ⟶ ℂ × ℂ,

⟦− ∨ −⟧ ⊣ ∆ ⊣ ⟦− ∧ −⟧
for the unique functor ! ∶ ℂ ⟶ 𝟙,

⟦⊥⟧ ⊣ ! ⊣ ⟦⊤⟧
for any B ∶ ℂ,

⟦− ∧ B⟧ ⊣ ⟦B ⊃ −⟧
for a projection π,

⟦∃𝑥⟧ ⊣ ⟦�̂�⟧∗ ⊣ ⟦∀𝑥⟧
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Natural Deduction by Adjunction
Remarkably, we can reconstruct the derivation system of natural deduction
uniformly from these adjunctions.

A single categorical construction generates the entire proof theory!

The adjunction-based perspective provides insight as well as concision:

The connectives are partitioned into two sets by their chirality:
whether they are characterized by a right or left adjoint functor.
We call them right connectives {∧ , ⊤ , ⊃ , ∀} and left connectives
{∨ , ⊥ , ∃}.
Connectives can be defined on derivations as well as on propositions (by
functoriality).

Permutation conversions can be defined for right as well as left
connectives (by naturality).

The non-invertible quantifier rules can be decomposed into a strictly logical
part and a substitution–very useful for proof search.
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Natural Deduction by Adjunction
.Theorem..

.

The adjunction-based interpretation of the connectives extends to an
interpretation of the inference rules and derivation conversions of natural
deduction in a uniform way:
For right connectives,
introduction rules:

adjoint complement operation (−♭),
elimination rules:

adjunction counit (ε),
local reductions:

factorization in the universal property of the counit (F(𝒟♭) ⋅ ε = 𝒟),
permutation conversions: (implicit in Gentzen’s syntax)

naturality of the adjoint complement bijection in the domain coordinate
(ℰ ⋅ 𝒟♭ = (F(ℰ) ⋅ 𝒟)♭),

local expansions:
identity maps on right adjoint images are adjoint complements of counit
components (id = ε♭).
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Natural Deduction by Adjunction
.Theorem..

.

The adjunction-based interpretation of the connectives extends to an
interpretation of the inference rules and derivation conversions of natural
deduction in a uniform way:
For left connectives,
introduction rules:

adjunction unit (η),
elimination rules:

adjoint complement operation (−♯),
local reductions:

factorization in the universal property of the unit (η ⋅ G(𝒟♯) = 𝒟),
permutation conversions:

naturality of the adjoint complement bijection in the codomain coordinate
(𝒟♯ ⋅ ℰ = (𝒟 ⋅ G(ℰ))♯),

local expansions:
identity maps on left adjoint images are adjoint complements of unit
components (id = η♯).
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Case: Conjunction

We can summarize the adjunction for conjunction (∆ ⊣ ⟦∧⟧) with the
diagram:

..

. ..∧ . .

..Prop ∶ .. ..∧ .

..Prop × Prop ∶ ..∆ ..( , ) .

. . ..∆( ∧ ) .

.
⟨𝒟 , 𝒟 ⟩
.
(𝒟 , 𝒟 )

.

∆( )

.

( , )( , )

.

𝒟 ∧ 𝒟

.

∆⟨𝒟 , 𝒟 ⟩

..

“Prop” is shorthand for Prop(Φ) for arbitrary typing context Φ.
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Introduction Rule
The bijection of this adjunction lets us swap a derivation in Prop ×Prop from
common assumptions for a one in Prop to a conjunction:

(𝒟 , 𝒟 ) ∶ ∆Γ ⟶ (A , B)
♭

⟼ ⟨𝒟 , 𝒟 ⟩ ∶ Γ ⟶ A ∧ B

In derivation notation:

Γ
𝒟
A

Γ
𝒟
B

♭

⟼
Γ

Γ
𝒟
A

Γ
𝒟
B

A ∧ B ∧+⋆

This rule is interchangeable with Gentzen’s rule when its assumptions are made
explicit, except that we account for their duplication:

Γ
𝒟
A

Γ
𝒟
B

A ∧ B ∧+
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Elimination Rule

The counit of this adjunction is the ordered pair of projections:

ε = (𝑓𝑠𝑡 , 𝑠𝑛𝑑)

As a pair of inference rules, these are exactly the elimination rules for ∧:

A B ⟼
A ∧ B
A

∧− A ∧ B
B

∧−

So the counit is an inference rule in the product category, Prop×Prop.
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Local Reduction

The factorization in the universal property of the counit :

∆⟨𝒟 , 𝒟 ⟩ ⋅ (𝑓𝑠𝑡 , 𝑠𝑛𝑑) = (𝒟 , 𝒟 )

translated into derivation notation:

Γ

Γ
𝒟
A

Γ
𝒟
B

A ∧ B ∧+⋆

A
∧−

Γ

Γ
𝒟
A

Γ
𝒟
B

A ∧ B ∧+⋆

B
∧− ∧ ⋆

⟼

Γ
𝒟
A

Γ
𝒟
B

gives us the ordered pair of local reductions for conjunction.
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Permutation Conversion
The naturality of the bijection in the domain coordinate:

ℰ ⋅ ⟨𝒟 , 𝒟 ⟩ = ⟨ℰ ⋅ 𝒟 , ℰ ⋅ 𝒟 ⟩

translated into derivation notation:

Γ
ℰ
C

C
𝒟
A

C
𝒟
B

A ∧ B ∧+⋆ ∧⇄⋆
⟼

Γ

Γ
ℰ
C
𝒟
A

Γ
ℰ
C
𝒟
B

A ∧ B ∧+⋆

This says that any derivation precomposed to a ∧+⋆ rule may be moved into the
minor branch by duplication.

Making this duplication operation explicit sheds light on the properties of the
meta-logic.
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Local Expansion

The equation for adjoint complements to counit components:

id ∧ = ⟨𝑓𝑠𝑡 , 𝑠𝑛𝑑⟩

translated into derivation notation:

A ∧ B ∧ ⋆
⟼

A∧ B
A ∧ B
A

∧− A ∧ B
B

∧−

A ∧ B ∧+⋆

gives us a local expansion for conjunction.

We recover Gentzen’s version by precomposing an arbitrary derivation and
applying the permutation conversion.
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Genericity of Free Hyperdoctrine Semantics

The adjoint-theoretic semantics generates the natural deduction proof theory.
But in the case of free interpretations, the converse holds as well:
.Corollary..

.

Freely-generated hyperdoctrine interpretations are generic for natural
deduction: arrows in the fibers correspond precisely to equivalence classes of
derivations under the conversion relations.

So free hyperdoctrine categorical semantics essentially is natural deduction
proof theory.

We have just made a proof-theoretic rabbit disappear into a categorical hat by
waving the magic wand of adjunctions.
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Freely-generated hyperdoctrine interpretations are generic for natural
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proof theory.
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Act 3: because making something disappear isn’t enough – you have to bring it
back



the pledge the turn the prestige indexed sequent calculus proof search strategies

Indexed Sequent Calculus
Indexed Quantifier Eigenrules

Indexed Quantifier Anderrules

Equivalence to Gentzen’s System

Proof Search Strategies for Logic Programming
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Sequent Calculus in Hyperdoctrines

The interpretation of an indexed sequent in a hyperdoctrine is a hom set in
the fibers:

⟦Φ | Γ ⟹ A⟧ ≔ P(⟦Φ⟧) (⟦Γ⟧ → ⟦A⟧)

We can interpret sequent calculus inference rules using adjunctions as well (cf.
the Prawitz translation).

The bijection of adjoint complements provides interpretations for:
right rules
left rules of right connectives

left connectives . We call these eigenrules.
They are always invertible.

Composition with a counit or unit component provides interpretations for:
left rules

right rules of right connectives
left connectives . We call these anderrules.

The rules derived this way for the quantifiers lead to a formulation of sequent
calculus that is indexed by typing contexts.
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Indexed Quantification

We can summarize the adjunction for universal quantification (⟦�̂�⟧∗ ⊣ ⟦∀𝑥⟧) with
the diagram:

..

. ..∀ ∶ . ̂∗ . .

..Prop( ) ∶ .. ..∀ ∶ . .

..Prop( , ∶ ) ∶ ..̂∗ .. .

. . ..̂∗(∀ ∶ . ) .

.
𝒟

.

𝒟

.

∀ ( )

.

∀ ( )

.

∀ ∶ . 𝒟

.

̂∗( 𝒟)

.

⇑

.
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Indexed Quantifier Eigenrules

The bijection of the adjunction:

Prop(Φ) (Γ → ∀𝑥 ∶ X . A)
Prop(Φ , 𝑥 ∶ X) (�̂�∗Γ → A)

yields (upside-down) an indexed sequent calculus eigenrule:

Φ , 𝑥 ∶ X | Γ ⟹ A
Φ | Γ ⟹ ∀𝑥 ∶ X . A ∀R⋆

This is equivalent to the standard right rule:

Γ ⟹ A[𝑥↦𝑒]
Γ ⟹ ∀𝑥 ∶ X . A ∀R

may not occur in the conclusion

(just let 𝑒 ≔ 𝑥).
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Indexed Quantifier Anderrules

..

.., ∀ ∶ . ..̂∗ , ̂∗(∀ ∶ . ) .., ∀ ∶ .

. ..̂∗ , .., [ ↦ ]

.. ..̂∗ ..

.. .., ∶ ..

.

̂

.

[ ↦ ]

..

, ∀ ( )

.

, ( ∀ ( ))[ ↦ ]

. 𝒟

The standard left rule for universal quantification:
𝑡 ∶ X Γ , A[𝑥↦𝑡] ⟹ B

Γ , ∀𝑥 ∶ X . A ⟹ B ∀L

can be written in the indexed sequent calculus as:
Φ ⟹ 𝑡 ∶ X Φ | Γ , A[𝑥↦𝑡] ⟹ B

Φ | Γ , ∀ 𝑥 ∶ X . A ⟹ B ∀L

It corresponds to first reindexing by the term, then composing with the counit.
But what if we don’t yet know which term to use?
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Indexed Quantifier Anderrules

..

.., ∀ ∶ . ..̂∗ , ̂∗(∀ ∶ . ) .., ∀ ∶ .

. ..̂∗ , .., [ ↦ ]

.. ..̂∗ ..

.. .., ∶ ..

.

̂

.

[ ↦ ]

..

, ∀ ( )

.

, ( ∀ ( ))[ ↦ ]

. 𝒟

Reading composition with the counit as an inference rule gives us:
Φ , 𝑥 ∶ X | �̂�∗Γ , A ⟹ �̂�∗B

Φ , 𝑥 ∶ X | �̂�∗Γ , �̂�∗(∀𝑥 ∶ X . A) ⟹ �̂�∗B

We want a substitution instance of this rule, we just don’t know which one yet.
But no matter the term, the conclusion will be:

Φ | Γ , ∀ 𝑥 ∶ X . A ⟹ B

We could use this conclusion in the rule if we knew that some term exists.
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Indexed Quantifier Anderrules

..

.., ∀ ∶ . ..̂∗ , ̂∗(∀ ∶ . ) .., ∀ ∶ .

. ..̂∗ , .., [ ↦ ]

.. ..̂∗ ..

.. .., ∶ ..

.

̂

.

[ ↦ ]

..

, ∀ ( )

.

, ( ∀ ( ))[ ↦ ]

. 𝒟

So we can add a premise to ensure that this is the case:

Φ ⟹ 𝑥 ∶ X Φ , 𝑥 ∶ X | Γ , A[𝑥↦𝑥] ⟹ B
Φ | Γ , ∀ 𝑥 ∶ X . A ⟹ B ∀L⋆

The underlining annotation reminds us that we owe a substitution for this vari-
able.
We call this an obligation variable, but in the semantics it is just a context vari-
able.



the pledge the turn the prestige indexed sequent calculus proof search strategies

Indexed Quantifier Anderrules

..

.., ∀ ∶ . ..̂∗ , ̂∗(∀ ∶ . ) .., ∀ ∶ .

. ..̂∗ , .., [ ↦ ]

.. ..̂∗ ..

.. .., ∶ ..

.

̂

.

[ ↦ ]

..

, ∀ ( )

.

, ( ∀ ( ))[ ↦ ]

. 𝒟

We recover the standard rule by immediately choosing a term by which to reindex:

Φ ⟹ 𝑡 ∶ X
Φ ⟹ 𝑥 ∶ X

[𝑥↦𝑡]
Φ | Γ , A[𝑥↦𝑡] ⟹ B

Φ , 𝑥 ∶ X | Γ , A[𝑥↦𝑥] ⟹ B
[𝑥↦𝑡]

Φ | Γ , ∀ 𝑥 ∶ X . A ⟹ B ∀L⋆

But there is no reason that we need to choose the term right away.
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Indexed Sequent Calculus
This motivates the indexed sequent calculus, with rules for

propositional connectives : as in Gentzen

quantifiers :

, ∶ | ⟹
| ⟹ ∀ ∶ . ∀ ⋆

⟹ ∶ , ∶ | , [ ↦ ] ⟹
| , ∀ ∶ . ⟹ ∀ ⋆

, ∶ | , ⟹
| , ∃ ∶ . ⟹ ∃ ⋆

⟹ ∶ , ∶ | ⟹ [ ↦ ]
| ⟹ ∃ ∶ . ∃ ⋆

substitution :
⟹ [ ↦ ] ∶

⟹ ∶
[ ↦ ]

| [ ↦ ] ⟹ [ ↦ ]
, ∶ | ⟹

[ ↦ ]

Restriction:

Substitutions may be made only for obligation variables.

Substitution must be applied to the whole frontier to reindex a derivation.
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Why Indexed Quantifier Anderrules?

Decomposing the non-invertible quantifier rules this way lets us postpone term
selection until we have more information.
.Example..

.

If there’s something to which everything is related, then everything is related to
something:

.

.

.

.
∅ | ∃ ∶ . ∀ ∶ . ( , ) ⟹ ∀ ∶ . ∃ ∶ . ( , )
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∶ , ∶ , ∶ | ∀ ∶ . ( , ) ⟹ ( , )
∀

∶ , ∶ | ∀ ∶ . ( , ) ⟹ ∃ ∶ . ( , )
∃
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∃
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Why Indexed Quantifier Anderrules?

Decomposing the non-invertible quantifier rules this way lets us postpone term
selection until we have more information.
.Example..

.

If there’s something to which everything is related, then everything is related to
something:

∶ , ∶ ⟹ ∶

∶ , ∶ ⟹ ∶

∶ , ∶ , ∶ ⟹ ∶

∶ , ∶ , ∶ ⟹ ∶

∶ , ∶ | ( , ) ⟹ ( , )

∶ , ∶ , ∶ | ( , ) ⟹ ( , )
[ ↦ ]

∶ , ∶ , ∶ , ∶ | ( , ) ⟹ ( , )
[ ↦ ]

∶ , ∶ , ∶ | ∀ ∶ . ( , ) ⟹ ( , )
∀

∶ , ∶ | ∀ ∶ . ( , ) ⟹ ∃ ∶ . ( , )
∃

∶ | ∃ ∶ . ∀ ∶ . ( , ) ⟹ ∃ ∶ . ( , )
∃

∅ | ∃ ∶ . ∀ ∶ . ( , ) ⟹ ∀ ∶ . ∃ ∶ . ( , )
∀

Exercise: what goes wrong if we try to prove the converse sequent?
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Equivalence to LJ

Indexed sequent calculus proves the same sequents as ordinary sequent
calculus:
.Theorem..

.
Every indexed sequent proof can be transformed into an ordinary sequent proof
(and vice versa).

But the indexed system has first-class logic variables, in the form of obligation
variables.

This is very useful for proof search.

We have just pulled from our hat a fancier rabbit2 than the one that went
in.

2Angora?
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Indexed Sequent Calculus

Proof Search Strategies for Logic Programming
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Application to Logic Programming

A proof search strategy is a procedure for determining inferences to
apply to the frontier of an incomplete proof .

We can characterize the logic programming computation mechanisms of
SLD-resolution and uniform proof as search strategies in the indexed
sequent calculus.

We can also adapt Andreoli’s strategy of focusing [And92] to this system.

These strategies form a sequence of increasing generality, with focusing a
non-deterministically complete strategy for full first-order logic having a
much reduced search space.
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Semantic Analysis of Search Strategies

The adjunction-theoretic semantics for indexed sequent calculus gives us an
algebraic and uniform understanding of properties of search strategies.

For example, we can justify the following features.

apply eigenrules eagerly: these are bijections of proof objects so their
application cannot sacrifice provability.

purge redundant assumptions from contexts: the principal formula of left
eigenrules need not be retained in the premises.

determine which rules are strictly commuting: these rules are essentially
parallel: only one of the possible ordering need be tried.

These observations lead naturally to focusing strategies.
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Conclusion

In summary:

The categorical approach to proof theory gives us a better understanding
of the abstract algebraic principles governing a logic.

Proof-theoretic semantics for logic programming languages provides
declarative descriptions of their computation mechanisms in terms of
search strategies.

The composition of these two approaches permits the algebraic analysis of
logic programming languages.
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Appendix

Natural Deduction

Inference Rules

Derivation Conversions

Sequent Calculus

Structural Rules

Logical Rules
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Natural Deduction



natural deduction sequent calculus References inference rules derivation conversions

Inference Rules

Derivation Conversions
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Inference Rules

∧ ∧ ∧ ∧ ∧ ∧

∨
∨

∨
∨ ∨

[ ]
𝒟

[ ]
𝒟

∨

no rule for

no rule for
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Inference Rules ctd.

[ ]
𝒟

⊃ ⊃ ⊃ ⊃

[ ∶ ]
𝒟

[ ↦ ]
∀ ∶ . ∀

∀ ∶ . ∶
[ ↦ ] ∀

∶ [ ↦ ]
∃ ∶ . ∃ ∃ ∶ .

[ ∶ ] , [ [ ↦ ]]
𝒟

∃

may not occur outside of 𝒟 or in any open premise
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Inference Rules

Derivation Conversions
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Local Reductions

𝒟 𝒟

∧ ∧
∧ ∧⟼

𝒟

ℰ

∨
∨

[ ]
𝒟

[ ]
𝒟

∨ , ∨⟼

ℰ

𝒟

no local reduction for

no local reduction for
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Local Reductions ctd.

[ ]
𝒟

⊃ ⊃ ℰ

⊃ ⊃⟼

ℰ

𝒟

[ ∶ ]
𝒟

[ ↦ ]
∀ ∶ . ∀ 𝒯

∶
[ ↦ ] ∀ ∀⟼

𝒯
∶

𝒟[ ↦ ]
[ ↦ ]

𝒯
∶

ℰ
[ ↦ ]

∃ ∶ . ∃

[ ∶ ] [ [ ↦ ]]
𝒟

∃ , ∃⟼

𝒯
∶

ℰ
[ ↦ ]

𝒟[ ↦ ]
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Local Expansions

ℰ
∧ ∧⟼

ℰ
∧ ∧

ℰ
∧ ∧

∧ ∧

ℰ
∨ ∨⟼

ℰ
∨ ∨

∨
∨

∨

∨ ∨ ,

ℰ
⟼

ℰ
⟼

ℰ
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Local Expansions ctd.

ℰ
⊃ ⊃⟼

ℰ
⊃ ⊃

⊃ ⊃

ℰ
∀ ∶ . ∀⟼

ℰ
∀ ∶ . ∶

[ ↦ ] ∀

∀ ∶ . ∀

ℰ
∃ ∶ . ∃⟼

ℰ
∃ ∶ .

∶ [ ↦ ]
∃ ∶ . ∃

∃ ∶ . ∃ ,
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Permutation Conversions

∨

[ ]
𝒟

[ ]
𝒟

∨

ℰ
∨⇄⟼

∨

[ ]
𝒟

ℰ

[ ]
𝒟

ℰ

∨

ℰ
⇄⟼

∃ ∶ .

[ ∶ ] , [ [ ↦ ]]
𝒟

∃

ℰ
∃⇄⟼

∃ ∶ .

[ ∶ ] , [ [ ↦ ]]
𝒟

ℰ

∃
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Sequent Calculus
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Structural Rules

Logical Rules



natural deduction sequent calculus References structural rules logical rules

Structural Rules

, , ⟹
, ⟹

⟹
, ⟹

⟹ , ⟹
⟹

, ⟹
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Structural Rules

Logical Rules
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Logical Rules

⟹ ⟹
⟹ ∧ ∧

, , ⟹
, ∧ ⟹ ∧

⟹
⟹ ∨ ∨ ⟹

⟹ ∨ ∨ , ⟹ , ⟹
, ∨ ⟹ ∨

⟹ no rule for

no rule for , ⟹
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Logical Rules ctd.

, ⟹
⟹ ⊃ ⊃

⟹ , ⟹
, ⊃ ⟹ ⊃

⟹ [ ↦ ]
⟹ ∀ ∶ . ∀

∶ , [ ↦ ] ⟹
, ∀ ∶ . ⟹ ∀

∶ ⟹ [ ↦ ]
⟹ ∃ ∶ . ∃

, [ ↦ ] ⟹
, ∃ ∶ . ⟹ ∃
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