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In the beginning there was PROLOG

PROLOG has:

the logic of Horn clauses

operational semantics of resolution

denotational semantics based in model theory (classical logic)

Weaknesses:

to be practical, incorporates extra-logical features (e.g. assert/retract, cut)

not clear how to extend to other logics

“logic programming is logic plus control” – Kowalski

How to get the logic to do more of the work?
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The Miller Revolution

Dale Miller realized the connective of implication could interpret scoping and
modules [Mil89]:

The goal D ⊃ G could mean, “try to satisfy the goal G in the current environment
augmented by the local assumption D”.

But not classically:

G1∨ (D⊃G2) ≡ G1∨¬D∨G2 ≡ (D⊃G1)∨G2 ≡ (D⊃G1)∨ (D⊃G2)

Intuitionistic logic makes a natural choice.
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Abstract Logic Programming Languages

Miller et al [Mil+91] proposed an operational semantics for goal-directed proof
search in intuitionistic logic by taking inversions of natural deduction introduction
rules (sequent right rules) as search instructions (⊢ ):

SUCCESS : Γ ⊢ ⊤ always
FAILURE : Γ ⊢ ⊥ never

BOTH : Γ ⊢ A ∧ B only if Γ ⊢ A and Γ ⊢ B
EITHER : Γ ⊢ A ∨ B only if Γ ⊢ A or Γ ⊢ B

AUGMENT : Γ ⊢ A ⊃ B only if Γ , A ⊢ B
GENERIC : Γ ⊢ ∀𝑥 ∶ X . A only if Γ ⊢ A [𝑥↦𝑒] for 𝑒 ∉ FV(Γ , A)

INSTANCE : Γ ⊢ ∃𝑥 ∶ X . A only if Γ ⊢ A [𝑥↦𝑡] for some 𝑡 ∶ X
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Abstract Logic Programming Languages

Miller et al [Mil+91] proposed an operational semantics for goal-directed proof
search in intuitionistic logic by taking inversions of natural deduction introduction
rules (sequent right rules) as search instructions (⊢ ):

Easy to understand and implement
Not complete (eg: A ∨ B ⊬ A ∨ B)
They then investigated fragments of intuitionistic logics for which it is complete,
calling them “abstract logic programming languages”.
The largest such fragment they identified, “hereditarily Harrop logic”, is in
some sense maximal (via interpolation) [Har94].
Not a complete specification: what to do with atomic goals?
A natural goal-directed choice is backward-chaining – cf. Coq’s apply tactic

These ideas led to the development of λ-PROLOG.
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...2 Proof Search in Proof Theory
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Proof Theory and Proof Search

Proof search in proof theory is an active field, with surprisingly little interaction with
logic programming.

A common approach: invent clever (often complicated) sequent calculi with
structural properties that facilitate proof search (eg: contraction-free [Dyc92],
permutation-free [DP96], focused [How98] [Sim12] ).

Unfortunately, all that cleverness tends to make them difficult to reason about

Being “far from” natural deduction, it can be non-trivial to show equivalence,
cut-admissibility; to add proof terms, etc.

But this work need be done only once, so this approach is certainly workable
(cf. Coq’s firstorder tactic)
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Search Strategies in Sequent Calculi

A different approach: stick with a simple sequent calculus “close to” natural
deduction and add a layer of search strategy on top.

This approach can describe Miller’s uniform proof(goal-directed strategy),
Simmons’ structural focalization (via erasure), potentially others.

We investigate this approach in a categorical setting.
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Why Categorical Proof Theory?

Advantages of categorical proof theory:

Categorical logic / type theory a very active field, with many powerful tools
from category theory proper

Allows us to choose how much syntax we care about (eg: “projections instead
of variables” (open-α-equivalence) [AM89], normal proof-term equivalence
(βη-equivalence) [Law69] [See83], proof-term rewriting [Gha95] [Gar09] )

Structural properties can be built-in (eg: interpreting contexts as cartesian
products realize weakening as projection and contraction as internal diagonal)

Mostly does away with distinction between natural deduction and sequent
calculus (N.D. derivations and S.C. proofs are just arrows)

Uniform treatment of semantics: build a generic model in the classifying
category of a logic, then models are simply functors [LS86]
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...3 Adjunctions in Categorical Proof Theory
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Adjointness in Foundations

Each connective of first-order intuitionistic logic is determined by an adjunction
(thanks Bill Lawvere! [Law69])

It turns out that this fact alone is enough to ensure many good properties of the
logic:

harmony (local soundness and completeness)

permutation conversions of ⊥ , ∨ , ∃
normalizability of natural deduction derivations (thanks Dag Prawitz! [Pra65])

sequent cut elimination

etc. (?)

Most inference rules and properties of first-order intuitionistic natural deduction and
sequent calculus arise uniformly from the adjoint formulations of the connectives.
So we can generate proof theory from category theory.
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Example Right Connective

Conjunction is
an introduction and two elimination inference rules:

A B
A ∧ B ∧+ A ∧ B

A ∧− A ∧ B
B ∧−

which are harmonious:

𝒟 𝒟

∧ ∧
∧

⟹∧

𝒟

ℰ
∧ ⟹∧

ℰ
∧ ∧

ℰ
∧ ∧

∧ ∧
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Example Right Connective

Conjunction is
a cartesian product, i.e. the right adjoint to a diagonal functor (∆ ⊣ ∧):

Γ ∧ Γ
𝒟 ∧𝒟

%%KK
KKK

KKK
KKK

KKK
KK

Prop ∶ Γ ⟨𝒟 ,𝒟 ⟩
//

∆( )

OO

A ∧ B

Prop × Prop ∶ ∆Γ (𝒟 ,𝒟 ) //

∆⟨𝒟 ,𝒟 ⟩
%%KK

KK
KK

KK
KK

KK
KK

KK
(A , B)

⇑

∆(A ∧ B)

( , )( , )

OO
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Deriving the Introduction Rule

In the syntax of derivations, this tells us that there is a natural bijection:

∆Γ
𝒟

(A , B)
♭

⟼
Γ

∆Γ
𝒟

(A , B)
∧(A , B)

The natural isomophism −♭ is interchangable for ∧+
By being a natural isomorphism, it is automatically invertible

The rule determines an arrow from the major premise to the conclusion of
the rule in one category (Prop) from an arrow (derivation) determined by the
minor premise in another category (Prop × Prop).
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Deriving the Elimination Rule

The counit of the adjunction ε is the ordered pair of projections in
Prop × Prop:

A B ⟼
A ∧ B
A 𝑓𝑠𝑡 A ∧ B

B 𝑠𝑛𝑑

This is exactly the ordered pair of elimination rules for ∧.
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Local Soundness

We can now see how the local reduction (in Prop × Prop !):

𝒟 𝒟

∧ ∧ ∗

∧

𝒟 𝒟

∧ ∧ ∗

∧
⟹∧

𝒟 𝒟

is natural deduction notation for:

∆((𝒟 , 𝒟 )♭) ⋅ ε(A , B) = (𝒟 , 𝒟 )

This is the universal property of the counit.
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Local Completeness

Similarly, the local expansion:

ℰ
∧ ⟹∧

ℰ
∧ ∧

ℰ
∧ ∧

∧ ∧ ∗

is natural deduction notation for:

ℰ = (ℰ♯)♭ ( )♭

= (∆ℰ ⋅ ε(Α , Β))♭
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Natural Deduction for Right Connectives

Pleasingly, the same relationship holds for all the connectives defined by right
adjoint functors (⊤ , ∧ , ⊃ , ∀1). We call them right connectives.

introduction rule corresponds to taking the adjoint complement −♭

elimination rule corresponds to composing the component of the counit ε
local reduction corresponds to taking the shortcut β
local expansion corresponds to conjugating −♯ with β

1almost
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Natural Deduction for Left Connectives

The situation for connectives defined by left adjoint functors (⊥ , ∨ , ∃), left
connectives, is nearly dual but there is a complication:

Intuitionistic derivations are asymmetrical : they must have a single conclusion but
may have multiple premisses.

Because the natural bijections of left connectives are determined by “arrows out of”
rather than “arrows into” them, it is necessary to ensure that their elimination rules
are compatible with contexts.

This requires satisfying the distributive law and Frobenius reciprocity :

Γ , A ∨ B ≡ (Γ ∧ A) ∨ (Γ ∧ B) Γ , ∃𝑥 . A ≡ ∃𝑥 . Γ ∧ A

Categorically, we get this for free in BCCC (categry of (small) bicartesian closed
categories and functors) – Thanks Nobuo Yoneda!
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Example Left Connective

Existential quantification is
a pair of inference rules:

𝑡 ∶ X A[𝑥↦𝑡]
∃𝑥 ∶ X . A ∃+ ∃𝑥 ∶ X . A

[𝑒 ∶ X] [A[𝑥↦𝑒]]
𝒟
B

B ∃−

𝑒 may not occur outside of 𝒟 or in any open premise

which satisfy:
local soundness
local completeness
permutation conversion
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Example Left Connective

Existential quantification is
in a hyperdoctrine, the left adjoint to a typing-context weakening (∃�̇� ⊣ �̇�∗):

�̇�∗(∃𝑥 ∶ X . A)

̇ ∗( 𝒟)

''OO
OOO

OOO
OOO

OOO
OOO

OO

⇓
Prop(Φ , 𝑥 ∶ X) ∶ A 𝒟

//

( )

OO

�̇�∗B

Prop(Φ) ∶ ∃𝑥 ∶ X . A 𝒟 //

∃ ∶ .𝒟
''OO

OOO
OOO

OOO
OOO

OOO
OO

B

∃𝑥 ∶ X . �̇�∗B

( )

OO
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Deriving the Elimination Rule

In the syntax of derivations, this tells us that there is a natural bijection:

A
𝒟

�̇�∗(B)
♯

⟼
∃�̇�(A)

A
𝒟

�̇�∗(B)
B

But this is not interchangeable for ∃−. The problem is that there is in general an
ambient logical context, Γ, that may be used in both branches. Given:

ℰ ∶ Prop(Φ) (Γ → ∃𝑥 ∶ X . A) 𝒟 ∶ Prop(Φ , 𝑥 ∶ X) (�̇�∗Γ ∧ A → �̇�∗(B))
we get the rule we want if we can fill the gap 𝑓:

Γ ⟨ ,ℰ⟩ // Γ ∧ ∃𝑥 ∶ X . A //______ ∃𝑥 ∶ X . (�̇�∗Γ ∧ A) 𝒟♯
// B

This is just Frobenius reciprocity (context distributivity for ∃).
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Deriving the Introduction Rule

The unit of the adjunction η:

A ⟼
A

�̇�∗(∃𝑥 ∶ X . A) ∃+∗

Also not interchangeable for ∃+: lives in the wrong category (Prop(Φ , 𝑥 ∶ X)).
But it can be reindexed along any term-in-context Φ ⊢ 𝑡 ∶ X

∃ ∶ . ̇ ∗(∃ ∶ . ) ∃ ∶ .

( )

OO

[ ↦ ]

∗( ( ))

OO

, ∶̇oo oojj
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Deriving the Permutation Conversion

Local reductions and expansions are pretty straightforward.

We point out the permutation conversion required for the proof of
normalizability:

∃ ∶ .

[ ]
𝒟
̇ ∗ ∃

ℰ
⟹∃

∃ ∶ .

[ ]
𝒟
̇ ∗
̇ ∗ℰ
̇ ∗

∃

Categorically, this is the forward direction of:

𝒟♯ ⋅ ℰ = (𝒟 ⋅ �̇�∗(ℰ))♯

which is a direct consequence of the nautrality of the bijection of the
adjunction.
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Categorical Sequent Calculus

These ideas extend directly to sequent calculi “close to” natural deduction.

We have used this to give categorical operational interpretation to Miller’s
connectives as search instructions.

Points to note:

Right rules of right connectives and left rules of left connectives (“eigenrules”)
take adjoint complements, (modulo left context distribution) so are invertible

Most “anderrules” compose a (co)unit, those for the quantifiers allow us to
delay the choice of instantiating term (cf: Coq’s “e”-tactics)

Left rule for ⊃ a bit different (incorporates a built-in cut), restricting this leads to
various (partial) proof search strategies (eg: backward and forward chaining)

Free hyperdoctrine (indexed bicartesian closed category) provides a
categorical generic model for proof search
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...4 Connective Chirality and Search Strategy
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Constructivity of Intuitionistic Logic

Can be understood to mean:

Disjuntion Property

⊢ A ∨ B ⟺ ⊢ A or ⊢ B

Existence Property

⊢ ∃𝑥 ∶ X . A ⟺ ⊢ A [𝑥↦𝑡] for some 𝑡 ∶ X

By analogy, we add:

Falsity Property
⊢ ⊥ ⟺ never

which simply expresses consistency.
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Constructivity of Intuitionistic Logic

In the ’60’s, Kleene and Harrop noticed:

Strong Disjuntion Property: If Γ contains no strictly positive disjunction
then:

Γ ⊢ A ∨ B ⟺ Γ ⊢ A or Γ ⊢ B

Strong Existence Property: If Γ contains no strictly positive disjunction or
existential then:

Γ ⊢ ∃𝑥 ∶ X . A ⟺ Γ ⊢ A [𝑥↦𝑡] for some 𝑡 ∶ X

Continuing the analogy:

Strong Falsity Property: If Γ contains no strictly positive ⊥ (negation) then:

Γ ⊢ ⊥ ⟺ never
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Constructive Sequents

This gives a sufficient condition for the invertibility of right rules of left
connectives.

Recall that right rules of right connectives are always invertible by the natural
bijections of their adjunctions.

By restricting left connectives to occur only positively on the right and only
negatively on the left of a sequent we have a system where all right rules are
invertible. We call these “constructive sequents”.

This validates the completeness of goal directed search for constructive
sequents.
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Hereditarily Harrop Logic

Recursive grammar for constructive sequents

Let 𝒟 and 𝒢 be the sets of constructive antecedents (“program formulae”) and
constructive succedents (“goal formulae”).

They may be defined by the recursive grammars:

D ⩴ P | ⊤ | D ∧ D | ∀𝑥 ∶ X . D | G ⊃ D
G ⩴ P | ⊤ | ⊥ | G ∧ G | G ∨ G | ∀𝑥 ∶ X . G | ∃𝑥 ∶ X . G | D ⊃ G

where P is the class of atomic propositions.

This is essentially the same as hereditarily Harrop program and goal formula, which
don’t contain ⊤ and ⊥, respectively (the enrichment is of little practical use).
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Goal Directed Search for Atoms

Recall only right propositions may occur positively in constructive contexts
(antecedents)

Positive occurrences of right connectives can be rewritten by the natural
bijection of their adjunction

In particular, constructive contexts can be rewritten with the propositions in
strictly positive position all atoms

This allows a strategy of goal directed search for atoms
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Backward Chaining

𝑥 ∶ X
𝑥 ∶ X

Γ ⟹ G
(P σ = Pσ)
Γ , P ⟹ P

𝑖𝑛𝑖𝑡

Γ , G ⊃ P ⟹ P
⊃L

⋮ ∀L

Γ , ∀�⃗� ∶ X⃗ . G ⊃ P ⟹ P
∀L

Γ ⟹ P 𝑐L
⋮ ∗R

Categorically, this corresponds to pre-composing an arrow named by a program
clause with a derivation of an instance of the goal.
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