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Abstract

In this paper we review the definitions of weak double categories, lax
double functors between them, and connection structures within them;
we survey several illustrative examples of each concept, prove the ti-
tle proposition, and consider some of its applications. Throughout, we
use the graphical calculus of dual pasting diagrams to help clarify the
2-dimensional structures we encounter.

1 Introduction
The proximate purpose of this article is to prove the title proposition, along
with its three duals. The result itself is probably folklore, at the least there are
closely related results to be found in the literature on double categories, which
are surveyed below. Still, I have found this result in particular to be useful, and
I believe that it is worth recording a direct, algebraic proof of it.

A more general motivation is to demonstrate a style of presentation based on the
graphical calculus of dual pasting diagrams (or “string diagrams”) that is useful
for perspicuously recording and reasoning about many sorts of compositional
structure, including that of double categories.

Double categories, along with their dimensional generalizations, are useful tools
for reasoning about compositional systems in which there are multiple interact-
ing notions of morphism. From one perspective, cubical 𝑛-categories are just
another member of the menagerie of shapes of higher-dimensional categorical
structure, along with globular, simplicial, opetopic, and other even more fan-
tastic beasts. From this perspective, the various forms of higher-dimensional
categories should be somehow equivalent, at least in the dimensional colimit,
and the main feature differentiating them is the combinatorics that relates their
structure at different dimensions.

However, from another perspective, the cubical shape affords a tractable way
to represent, not only structure at different dimensions (e.g. a 2-dimensional
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square vs a 1-dimensional edge), but also structure in different dimensions1 (e.g.
the two distinct 1-dimensional subspaces of a square), along with relations that
may hold between them (e.g. a square that is symmetric about its diagonal has
the same structure in both dimensions).

2 Double Categories
Strict double categories were introduced by Ehresmann in [Ehr62]. The weak
or pseudo- form considered here has been studied extensively by Grandis and
Paré in a sequence of articles beginning with [GP99].

Intuitively, a double category is made up of 0-dimensional objects, two distinct
sorts of 1-dimensional morphisms, and 2-dimensional squares whose opposite
faces are morphisms of the same sort and adjacent faces are morphisms of op-
posite sorts. Squares compose in both dimensions by pasting along a shared
boundary morphism. This operation is well-defined in the sense that any way
of pasting together a compatible diagram yields the same composite [DP93].
A concise way to make this idea precise is to say that a double category is a
pseudo category internal to the 2-category of (suitably small) categories, which
amounts to the following.

Definition 2.1 (double category)
A (pseudo) double category 𝔻, consists of two ordinary categories, 𝔻0 and 𝔻1,
related by four functors:

L, R ∶ 𝔻1 → 𝔻0 , U ∶ 𝔻0 → 𝔻1 , − ⊙ − ∶ 𝔻1 ×𝔻0
𝔻1 → 𝔻1

where the pullback is taken over (R , L), such that

identity boundaries: U ⋅ L = id𝔻0 = U ⋅ R
composition boundaries: − ⊙ − ⋅ L = π0 ⋅ L and − ⊙ − ⋅ R = π1 ⋅ R
together with coherent natural isomorphisms with the following components

unitors: λ(M) ∶ U(LM) ⊙ M → M and ρ(M) ∶ M ⊙ U(RM) → M
associator: κ(M , N , P) ∶ (M ⊙ N) ⊙ P → M ⊙ (N ⊙ P)
We call objects of 𝔻0 objects of the double category 𝔻, morphisms of 𝔻0 its
arrows, objects of 𝔻1 its proarrows, and morphisms of 𝔻1 its squares.

The functors L and R pick out the “left” and “right” boundary objects of a
proarrow, and arrows of a square, respectively. For a proarrow M ∶ 𝔻1, we
use the barred arrow notation “M ∶ A ⇸ B” to indicate that L(M) = A and
R(M) = B. The functor U gives the identity proarrow on an object, and square
on an arrow, and − ⊙ − gives the composite of consecutive proarrows, and
of squares in the proarrow dimension. For composition in the (strict) arrow
dimension we use the notation “− ⋅ −” with units “id”. We write both sorts of
composition in normal (in contrast to applicative) order.

1the use of the term “dimension” for both concepts is perhaps unfortunate, but widespread,
and context is usually sufficient to disambiguate them.
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The coherence of the unitors and associator can be characterized in the same
way as for bicategories, namely by the so-called “pentagon equation” relat-
ing terms of type ((L ⊙ M) ⊙ N) ⊙ P → L ⊙ (M ⊙ (N ⊙ P)) and the “triangle
equation” relating those of type (M ⊙ U) ⊙ N → M ⊙ N. If the unitor natural
isomorphisms are identities then the double category is called unitary. If the
associator is an identity as well then it is strict. In the following we assume our
double categories to be at least strict for identity proarrows, in the sense that
UA⊙UA = UA and λ(UA) = ρ(UA) = κ(UA,UA,UA) = id(UA). Such double
categories are sometimes called preunitary [Gra19].

We write “M
𝑓◇

𝑔
N” for the configuration of morphisms given by arrows 𝑓 ∶ A → B

and 𝑔 ∶ C → D and proarrows M ∶ A ⇸ C and N ∶ B ⇸ D. A square with this
boundary, α ∶ M

𝑓◇
𝑔
N, can be depicted as either of the following dual diagrams,

though we generally prefer the latter, and usually suppress object labels when
they can be inferred or are irrelevant.

A C

B D
𝑓 𝑔

M

N

α , 𝑓 𝑔

M

N

α
A

B

C

D

Composition of squares is depicted as pasting along the common boundary
morphism in the appropriate dimension:

𝑓 ⋅ 𝑖 𝑔 ⋅ 𝑗

M

R

α ⋅ γ =
𝑓 𝑔

𝑖 𝑗

M

P

R

α

γ
and 𝑓 ℎ

M ⊙ N

P ⊙ Q

α ⊙ β = 𝑓 𝑔 ℎ

M

P

N

Q

α β

By the functoriality of ⊙ we have the equations,

(α ⋅ γ) ⊙ (β ⋅ δ) = (α ⊙ β) ⋅ (γ ⊙ δ) and id M ⊙ id N = id(M ⊙ N),

the former of which is a 2-dimensional associative law known as middle-four
exchange. These imply that each of the following diagrams has a unique inter-
pretation.

𝑓 𝑓″

𝑔 𝑔″

M

M″

N

N″

α β

γ δ
and

M

M

N

N
By the functoriality of U we have the equations,

U(𝑓 ⋅ 𝑔) = U𝑓 ⋅ U𝑔 and U(id A) = id(UA),

the latter of which provides a well defined notion of (double) identity square on
an object, which we write as “id2A”. These imply that each of the following
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diagrams has a unique interpretation.

𝑓 𝑓

𝑔 𝑔
and A

Note the convention of suppressing the drawing of composition unit cells. In
order to declutter notation we may also use dimensional promotion to elide an
“id” or “U” from a subterm when its dimension is evident from the context.

Unitor naturality implies that squares can “slide past” them, in the sense that
for any α ∶ M

𝑓◇
𝑔
N we have (𝑓 ⊙ α) ⋅ λN = λM ⋅ α and (α ⊙ 𝑔) ⋅ ρN = ρM ⋅ α:

M

N

𝑓 𝑔α

λ =

M

N

𝑓 𝑔

λ

α and

M

N

𝑓 𝑔α

ρ =

M

N

𝑓 𝑔

ρ

α

Similarly, squares can slide past an associator:

(M

M′

N)

(N′

P

P′)

𝑓 𝑖α β γ

κ
=

(M

M′

N)

(N′

P

P′)

𝑓 𝑖α β γ

κ

By convention we leave the associativity of a diagram implicit and rely on the
reader to mentally insert reassociating isomorphisms as needed. For an intro-
duction to string diagrams for double categories see Myers’ [Mye16].

Analogous to the case for bicategories, there is a coherence result for double
categories [GP99]. This is convenient because writing out all coherators ex-
plicitly can risk obscuring the main ideas of a construction. When presenting
an equation that holds up to coherators, we will write “≅” rather than “=”
as a reminder that coherators may be (uniquely) inserted in order to unify the
boundaries.

The objects of a double category together with either sort of morphism form a
category (weak in the proarrow case unless the double category is strict), known
as an edge category. Indeed, we can see not just 1-dimensional categories sitting
inside of a double category, but globular 2-dimensional ones as well.

Definition 2.2 (globular square)
We call a square of a double category globular if it has identity boundary mor-
phisms in (all but) one of its dimensions. A square with trivial proarrow bound-
ary is called an arrow disk (shown on the left), and one with trivial arrow
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boundary is called a proarrow disk (shown on the right):

A A

B B
𝑓 𝑔

U

U

α or 𝑓 𝑔α
A

B
and

A C

A C
id id

M

N

β or

M

N

βA C

The collections of arrow- and proarrow disks of a double category each determine
a wide sub-double category. We can identify these sub-double categories of
globular squares with actual 2-dimensional categories of globular shape, the
disk bicategories of a double category, which is a strict 2-category in the arrow
case. We overload the hom-notation for globular squares, writing “𝑓 ⇸ 𝑔” and
“M → N” for U

𝑓◇
𝑔
U and M

id◇id
N , respectively2. These globular embeddings let us

import constructions of formal category theory from bicategories [KS74; Lac09]
into double categories.

Recall that a category is called thin if it has at most one morphism with a given
boundary. By dimensional analogy, a double category is called flat if it has at
most one square with a given boundary.

Here are some examples of double categories.

Example 2.1 (the double category of sets, functions and relations)
There is a double category Set, where the objects are sets, arrows are functions,
and proarrows are relations. We express the proposition that relation R ∶ A ⇸ B
relates elements 𝑎 ∈ A and 𝑏 ∈ B using the notation “R (𝑎 ⤍ 𝑏)”. The double
category Set is flat, with relational implications as squares:

𝑓 𝑔

R

V

⇓
A

X

B

Y
= ∀ 𝑎 ∈ A, 𝑏 ∈ B . R (𝑎 ⤍ 𝑏) ⇒ V (𝑓𝑎 ⤍ 𝑔𝑏)

The composition of relations R ∶ A ⇸ B and S ∶ B ⇸ C is defined by the exis-
tential formula R ⊙ S (𝑎 ⤍ 𝑐) ≔ ∃ 𝑏 ∈ B . R (𝑎 ⤍ 𝑏) ∧ S (𝑏 ⤍ 𝑐). Composition
units are the homogeneous equality relations with UA (𝑥 ⤍ 𝑦) ≔ 𝑥 = 𝑦. Rela-
tions are extensional in the sense that for R, R′ ∶ A ⇸ B we have R = R′ just in
case ∀ 𝑎 ∈ A, 𝑏 ∈ B . R (𝑎 ⤍ 𝑏) ⇔ R′ (𝑎 ⤍ 𝑏). By relation extensionality, Set
is a strict double category.

Square composition in the arrow dimension is by the transitivity of implica-
tion. In the proarrow dimension, for any 𝑎 ∈ A and 𝑐 ∈ C in order to infer
V ⊙ W (𝑓𝑎 ⤍ ℎ𝑐) from R ⊙ S (𝑎 ⤍ 𝑐) we first apply the two implications being
composed with the common element of B from the premise and then take the

2Note that the latter is potentially ambiguous, since in the non-globular case the arrow
boundaries of a square in 𝔻1 (M → N) need not be identities, so we must make clear when we
mean a proarrow disk.
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𝑔-image of this element as our existential witness in the goal:

𝑓 𝑔 ℎ

R

V

S

W

⇓ ⇓
A

X

B

Y

C

Z
=

R ⊙ S (𝑎 ⤍ 𝑐)
≔ ∃ 𝑏 ∈ B . R (𝑎 ⤍ 𝑏) ∧ S (𝑏 ⤍ 𝑐)
⇒ ∃ 𝑏 ∈ B . V (𝑓𝑎 ⤍ 𝑔𝑏) ∧ W (𝑔𝑏 ⤍ ℎ𝑐)
⇒ ∃ 𝑦 ∈ Y . V (𝑓𝑎 ⤍ 𝑦) ∧ W (𝑦 ⤍ ℎ𝑐)
≕ V ⊙ W (𝑓𝑎 ⤍ ℎ𝑐)

Example 2.2 (span double categories)
For a category ℂ equipped with a pullback operation we define the span double
category Spanℂ, where (Spanℂ)0 is ℂ and a proarrow is a ℂ-span on the given
boundary. A (Spanℂ)-square is a ℂ-arrow between span apexes making the
digram commute:

𝑓 𝑔

(𝑝0 , 𝑝1)

(𝑟0 , 𝑟1)

α
A B

X Y
= A B

X Y

P

R𝑓 𝑔

𝑝0 𝑝1

𝑟0 𝑟1

α

The composition of spans is given by composing the chosen ℂ-pullback span of
their inner legs with their outer legs. Composition units are the identity spans
(id , id). If the chosen pullbacks of cospans (𝑓 , id) and (id , 𝑓) are the spans
(id , 𝑓) and (𝑓 , id), respectively then Spanℂ is a unitary double category.

Square composition in the arrow dimension is by diagram pasting in ℂ. In the
proarrow dimension it is given by the universal property of the pullback:

𝑓 𝑔 ℎ

(𝑝0 , 𝑝1)

(𝑟0 , 𝑟1)

(𝑞0 , 𝑞1)

(𝑠0 , 𝑠1)

α β = ∙ ∙ ∙

∙ ∙

∙

∙ ∙ ∙

∙ ∙

∙
α ⊙ β

𝑓 𝑔 ℎ
α β

𝑟1 𝑠0

𝑝0 𝑞1

Span double categories are in general not flat, yet their 2-dimensional structure
is entirely determined by their 1-dimensional structure.

Example 2.3 (quintet double categories)
For a 2-category ℂ we define the quintet double category Qℂ, where both edge
categories are the category of objects and morphisms of ℂ. The set of squares
𝑚
𝑓◇

𝑔
𝑛 in Qℂ is the set of disks 𝑚 ⋅ 𝑔 → 𝑓 ⋅ 𝑛 in ℂ; so a square of Qℂ is a disk

of ℂ together with a chosen binary factorization of its boundary morphisms.
Composition in Qℂ is the same as in ℂ, but keeping track of whether a morphism
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is regarded as an arrow or a proarrow:

𝑓 𝑔 ℎ

𝑚

𝑝

𝑛

𝑞

α β =

𝑚

𝑝

𝑛

𝑞

ℎ

𝑔

𝑓

α
β

and
𝑓 𝑔

𝑖 𝑗

𝑚

𝑝

𝑟

α

γ
=

𝑚

𝑝

𝑟

𝑔

𝑓

𝑗

𝑖

α
γ

This makes Qℂ a strict double category. Quintet double categories were intro-
duced by Ehresmann in [Ehr63].

Example 2.4 (the double category of categories, functors, and profunctors)
There is a double category Cat, where objects are (suitably small) categories,
arrows are functors, and proarrows are profunctors; that is, a proarrow 𝔸 ⇸ 𝔹
is a functor 𝔸° × 𝔹 → Set (where this “Set” is the ordinary 1-category of
sets and functions, our Set0). We express the set determined by profunctor
M ∶ 𝔸 ⇸ 𝔹 acting on objects A ∶ 𝔸 and B ∶ 𝔹 using the notation “M (A ⤍ B)”,
which we can think of as the set of M-heteromorphisms between A and B. Pairs
of morphisms 𝑎 ∶ 𝔸 (A′ → A) and 𝑏 ∶ 𝔹 (B → B′) determine a function M (𝑎 ⤍
𝑏) ∶ Set (M (A ⤍ B) → M (A′ ⤍ B′)). Squares of the double category Cat are
disks of the cartesian monoidal 2-category of categories, functors and natural
transformations. In particular, a square α ∶ M

F◇G
P is a natural transformation

α ∶ (𝔸° × 𝔹 → Set) (M → (F° × G) ⋅ P):

F G

M

P

α
𝔸

𝕏

𝔹

𝕐
=

Set
F°

𝔸°

G

𝔹

M

P

α

with component functions α(A , B) ∶ Set (M (A ⤍ B) → P (FA ⤍ GB)).
The composition of profunctors M ∶ 𝔸 ⇸ 𝔹 and N ∶ 𝔹 ⇸ ℂ is defined by a
choice of coend in the formula M ⊙ N (A ⤍ C) ≔ ∫B∶𝔹 M (A ⤍ B) × N (B ⤍ C).
Composition units are the homogeneous hom profunctors, with U𝔸 (X ⤍ Y) ≔
𝔸 (X → Y). For a thorough introduction to coends and their calculus see Lore-
gian’s [Lor19].

The coend quotients the sets of ordered pairs of heteromorphisms by the relation
of simultaneous factorization by morphisms in the intermediate category: for
𝑥 ∶ M (A ⤍ B), 𝑦 ∶ N (B ⤍ C), 𝑥′ ∶ M (A ⤍ B′) and 𝑦′ ∶ N (B′ ⤍ C), we have
(𝑥 , 𝑦) = (𝑥′ , 𝑦′) in M ⊙ N (A ⤍ C) just in case there is a 𝑏 ∶ 𝔹 (B → B′) such
that M (A ⤍ 𝑏)(𝑥) = 𝑥′ and N (𝑏 ⤍ C)(𝑦′) = 𝑦. Intuitively, we can think of
this as an associative law 𝑥 ⋅ (𝑏 ⋅ 𝑦′) = (𝑥 ⋅ 𝑏) ⋅ 𝑦′, which we can depict as follows.

A
B

B′

C𝑏
𝑥

𝑦′𝑥′

𝑦
(2.1)
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Later, we will see that this can be interpreted literally as a commuting diagram
in a certain category.

Square composition in the arrow dimension is by diagram pasting:

F G

I J

M

P

R

α

γ
=

F° I°

G J

M

P

R

α

γ

In the proarrow dimension, to compose squares α ∶ M
F◇G

P and β ∶ N
G◇H

Q, we first
apply them independently as natural transformations α ∶ M → (F° × G) ⋅ P
and β ∶ N → (G° × H) ⋅ Q, and then compose with the natural transformation
∫B∶𝔹 P (F− ⤍ GB) × Q (GB ⤍ H−) → ∫Y∶𝕐 P (F− ⤍ Y) × Q (Y ⤍ H−) given
by the unique morphism between the coends that factors components of the
latter through those of the former as determined by the universal property of
the coend:

F G H

M

P

N

Q

α β
𝔸

𝕏

𝔹

𝕐

ℂ

ℤ
=

M ⊙ N (A ⤍ C)
≔ ∫B∶𝔹 M (A ⤍ B) × N (B ⤍ C)
→ ∫B∶𝔹 P (FA ⤍ GB) × Q (GB ⤍ HC)
→ ∫Y∶𝕐 P (FA ⤍ Y) × Q (Y ⤍ HC)
≕ P ⊙ Q (FA ⤍ HC)

3 Double Functors
When presented with a type of mathematical object we naturally seek to under-
stand an appropriate notion of morphism between its instances. It is often the
case that a natural notion of morphism between higher-dimensional categori-
cal structures does not preserve the composition structure within them strictly,
but rather up to canonical comparitor cells. The definition of lax double functor
presented here is essentially that of [GP99] (where the unit naturality condition
was omitted).

Definition 3.1 (lax double functor)
A lax double functor between double categories, F ∶ ℂ → 𝔻, consists of a pair of
(ordinary) functors F0 ∶ ℂ0 → 𝔻0 and F1 ∶ ℂ1 → 𝔻1 that are compatible with
the structural boundary functors L and R in the sense that F1 ⋅ L𝔻 = Lℂ ⋅ F0
and F1 ⋅ R𝔻 = Rℂ ⋅ F0:

ℂ1

ℂ0

𝔻1

𝔻0

L R L R

F1

F0
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and equipped with a system of coherent lax comparitors, θ. These can be
characterized by natural transformations θ0 ∶ F0 ⋅ U𝔻 → Uℂ ⋅ F1 and θ2 ∶
(F1 × F1) ⋅ ⊙ 𝔻 → ⊙ ℂ ⋅ F1, whose components are proarrow disks

FA FA

FA FA
id id

U

FU

θ0(A) and
FA FB FC

FA FC
id id

FM FN

F(M ⊙ N)

θ2(M , N)

The naturality conditions amount to the following relations on the comparitor
components.

unit naturality: for arrow 𝑓 ∶ ℂ (A → B), the relation θ0(A)⋅F(U𝑓) = U(F𝑓)⋅
θ0(B):

F(UB)

F𝑓 F𝑓

θ0

F(U𝑓) =

F(UB)

F𝑓 F𝑓

θ0 (3.1)

composition naturality: for consecutive ℂ-squares α ∶ M
𝑓◇

𝑔
M′ and β ∶ N

𝑔◇ℎ
N′ ,

the relation θ2(M , N) ⋅ F(α ⊙ β) = (Fα ⊙ Fβ) ⋅ θ2(M′ , N′):

FM FN

F(M′ ⊙ N′)

F𝑓 Fℎ

θ2

F(α ⊙ β) =

FM FN

F(M′ ⊙ N′)

F𝑓 Fℎ

θ2

Fα Fβ

(3.2)

These lax comparitors are required to be compatible with the double category
coherators in the following sense.

unitor compatibility: for ℂ-proarrow M ∶ A ⇸ B, the relations

(θ0(A) ⊙ FM) ⋅ θ2(A , M) ⋅ F(λM) = λ(FM) and
(FM ⊙ θ0(B)) ⋅ θ2(M , B) ⋅ F(ρM) = ρ(FM) ∶

FM

FM

θ0

θ2

Fλ
=

FM

FM

λ and

FM

FM

θ0

θ2

Fρ
=

FM

FM

ρ (3.3)

associator compatibility: for consecutive ℂ-proarrows M ∶ A ⇸ B, N ∶ B ⇸
C, and P ∶ C ⇸ D, the relation

(θ2(M , N) ⊙ FP) ⋅ θ2(M ⊙ N , P) ⋅ F(κ(M , N , P)) =
κ(FM , FN , FP) ⋅ (FM ⊙ θ2(N , P)) ⋅ θ2(M , N ⊙ P) ∶
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FMFM FN FP

F(M ⋅ (N ⋅ P))

θ2
θ2

Fκ

=

FM FNFN FP

F(M ⋅ (N ⋅ P))

κ
θ2

θ2

(3.4)

where we have momentarily made the associator explicit.

A double functor with comparitors that go the other way and are compatible
with the coherator inverses is an oplax double functor. A lax or oplax double
functor for which the nullary comparitor θ0 is invertible is called normal. If the
binary comparitor θ2 is also invertible then we have a pseudo double functor.
On the strict side, a double functor that strictly preserves identity proarrows
is called unitary, and if it strictly preserves proarrow composites as well it is
called strict.

Even lax double functors compose strictly, with composite comparitors given by

(F ⋅ G)(UA)

θF⋅G
0 =

G(F(UA))

θG
0

G(θF
0 )

and

(F ⋅ G)M (F ⋅ G)N

(F ⋅ G)(M ⊙ N)

θF⋅G
2 =

G(FM) G(FN)

G(F(M ⊙ N))

θG
2

G(θF
2 )

The strict identity double functors, id𝔻 ∶ 𝔻 → 𝔻, which are the identity function
on everything in sight, are composition units.

Next we consider some double functors that were presented by Grandis and
Paré in [GP99].

Example 3.1
For any choice of pullbacks there is a double functor R ∶ Span(Set0) → Set
such that R0 is the identity functor on the category Set0. The functor R1 sends
a span (𝑝0 , 𝑝1) ∶ A ⇸ B to the relation that it determines in the sense that
∀ 𝑥 ∈ ∂−𝑝𝑖 . R(𝑝0 , 𝑝1) (𝑝0𝑥 ⤍ 𝑝1𝑥); that is, the relation R(𝑝0 , 𝑝1) relates 𝑎 ∈ A
and 𝑏 ∈ B just in case there is an 𝑥 in the span apex such that 𝑝0𝑥 = 𝑎 and
𝑝1𝑥 = 𝑏.

We will see soon (proposition 4.6) that R is a normal oplax double functor
for purely formal reasons, but more is true. The relation determined by an
identity span is the equality relation, so R is unitary. Any pullback (𝑝 , 𝑞) of
the inner legs of consecutive spans (𝑝0 , 𝑝1) ∶ A ⇸ B and (𝑞0 , 𝑞1) ∶ B ⇸ C
is canonically isomorphic to the projection span (π0 , π1) from the set W ≔
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{(𝑥 , 𝑦) ∈ X × Y | 𝑝1𝑥 = 𝑞0𝑦}:

A B C
X Y

Z

W

𝑝0
𝑝1 𝑞0

𝑞1

𝑝 𝑞
π0 π1≅

and we have

(R(𝑝0 , 𝑝1) ⊙ R(𝑞0 , 𝑞1)) (𝑎 ⤍ 𝑐)
≔ ∃ 𝑏 ∈ B . R(𝑝0 , 𝑝1) (𝑎 ⤍ 𝑏) ∧ R(𝑞0 , 𝑞1) (𝑏 ⤍ 𝑐)
≔ ∃ 𝑏 ∈ B . (∃ 𝑥 ∈ X . 𝑝0𝑥 = 𝑎 ∧ 𝑝1𝑥 = 𝑏) ∧ (∃ 𝑦 ∈ Y . 𝑞0𝑦 = 𝑏 ∧ 𝑞1𝑦 = 𝑐)
⇒ ∃ (𝑥 , 𝑦) ∈ W . 𝑝0𝑥 = 𝑎 ∧ 𝑞1𝑦 = 𝑐
⇒ ∃ 𝑧 ∈ Z . 𝑝0(𝑝𝑧) = 𝑎 ∧ 𝑞1(𝑞𝑧) = 𝑐
⇒ R((𝑝0 , 𝑝1) ⊙ (𝑞0 , 𝑞1)) (𝑎 ⤍ 𝑐)

By relation extensionality, this together with the oplax comparitors makes R a
strict double functor.

Example 3.2
The double functor R has a section S ∶ Set → Span(Set0). The functor S0
is again the identity on Set0, while S1 takes a relation P ∶ A ⇸ B to its
tabulator. This is the jointly monic projection span from the subset of the
cartesian product containing the P-related pairs, {(𝑎 , 𝑏) ∈ A × B | P (𝑎 ⤍ 𝑏)}.
We will see soon (proposition 3.3) that S is a lax double functor for purely
formal reasons. Because the tabulator of an equality relation is the diagonal set
of ordered pairs and A ≅ {(𝑎 , 𝑎) ∈ A × A}, it is moreover normal.

Grandis and Paré investigate the characterization of tabulators in arbitrary
double categories in [GP99] and [GP17].

Definition 3.2 (proarrow tabulator)
In a double category 𝔻, a tabulator3 for a proarrow M ∶ A ⇸ B is a universal
square from the identity proarrow functor U ∶ 𝔻0 → 𝔻1 to M. Explicitly, this
constitutes an object ⊤M, a span of arrows π0M ∶ ⊤M → A and π1M ∶ ⊤M → B,
and a square εM ∶ U(⊤M)

π0M◇
π1M
M such that any square α from an identity proarrow

to M factors uniquely through εM by an identity arrow disk:

𝑓 𝑔

M

α
X

A B
= π0 π1

M

𝑑 𝑑
ε

A B

⊤M
X

(3.5)

3In [GP99] Grandis and Paré call these “one-dimensional tabulators” and consider an ad-
ditional two-dimensional universal property instrumental in defining double limits. In [GP17]
they drop the qualifier “one-dimensional” and refer to these simply as “tabulators”, as we
shall do here.
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A double category 𝔻 has tabulators for all proarrows just in case the identity
proarrow functor U ∶ 𝔻0 → 𝔻1 has a right adjoint, in which case the square
εM ∶ 𝔻1 (U(⊤M) → M) is the adjunction counit component at M, and we have
a natural bijection of hom sets given by

α ∶ 𝔻1 (UX → M)
𝑑 ∶ 𝔻0 (X → ⊤M).

All of the double categories considered in section 2 have tabulators for all proar-
rows, with Set as the motivating example. In a span double category, a tabu-
lator for a span (𝑝0 , 𝑝1) ∶ A ⇸ B is its apex object P with

π0 π1

(𝑝0 , 𝑝1)

ε
A B

⊤(𝑝0 , 𝑝1)
= P P

A B

P

P𝑝0 𝑝1

id id

𝑝0 𝑝1

id

In a quintet double category the domain object of a proarrow is a tabulator for
it with ε𝑓 ∶ U

π0
◇π1

𝑓 = id𝑓 ∶ id ⋅ 𝑓 → id ⋅ 𝑓 . In Cat a tabulator for a profunctor
is a two-sided discrete fibration [Rie10] over its boundary known as its cocollage
category [BS00]. The following result is from [GP17].

Proposition 3.3
If a double category 𝔻 has pullbacks for arrows and tabulators for proarrows
then there is a canonical lax double functor ⊤ ∶ 𝔻 → Span(𝔻0) that is the
identity functor on 𝔻0 and takes proarrows to their tabulator spans.

Proof. (idea) The action of the double functor on squares and the structure of
the lax comparitors all arise from the universal property of the tabulator.

• For arbitrary square α ∶ M
𝑓◇

𝑔
N we have

π0 π1

𝑓 𝑔

N

εM
α

C D

A B

⊤M

(3.5)= π0 π1

N

⊤α ⊤α
εN

C D

⊤N

⊤M

giving
A B

C D

⊤M

⊤N𝑓 𝑔

π0 π1

π0 π1

⊤α

• Factoring an identity square by the tabulator we have

id id

A

A

(3.5)=
π0 π1

θ0 θ0

ε(UA)
A

⊤(UA)

A

giving
A A

A A

A

⊤(UA)id id

id id

π0 π1

θ0

12



• Factoring a square to a composition of proarrows from the composition
of their tabulator spans by the tabulator of the composite (where the
highlighted arrow equality is the pullback of π1M and π0N) we have

𝑚

π1N

𝑛

π0M

M N

=
εM εN

A
B

C

⊤M ⊤N

⊤M ⊙ ⊤N
(3.5)=

π0 π1

M N

θ2 θ2

ε(M ⊙ N)
A B C

⊤(M ⊙ N)

⊤M ⊙ ⊤N

giving A C
⊤M ⊤N

⊤M ⊙ ⊤N

A C

⊤(M ⊙ N)
θ2

𝑚 𝑛

id id
π0 π1

π0 π1

Example 3.3
We can extend the functor embedding of sets as discrete categories into a pseudo
double functor D ∶ Span(Set0) → Cat. A span (𝑝0 , 𝑝1) ∶ A ⇸ B gets sent to
a profunctor with D(𝑝0 , 𝑝1) (𝑎 ⤍ 𝑏) = {𝑥 ∈ ∂−𝑝𝑖 | 𝑝0𝑥 = 𝑎 ∧ 𝑝1𝑥 = 𝑏}; that is,
the span’s apex is regarded as the set of all heteromorphisms of a profunctor,
and its legs as boundary assignment functions. A span morphism,

A B

C D

X

Y𝑓 𝑔

𝑝0 𝑝1

𝑞0 𝑞1

α

gets sent to itself, regarded as a (trivially natural) family of functions,

Dα(𝑎 , 𝑏) = α |{𝑥 | 𝑝0𝑥=𝑎∧𝑝1𝑥=𝑏} ∶ Set (D(𝑝0 , 𝑝1) (𝑎 ⤍ 𝑏)⏟⏟⏟⏟⏟⏟⏟
{𝑥 | 𝑝0𝑥=𝑎∧𝑝1𝑥=𝑏}

→ D(𝑞0 , 𝑞1) (𝑓𝑎 ⤍ 𝑔𝑏)⏟⏟⏟⏟⏟⏟⏟⏟⏟
{𝑦 | 𝑞0𝑦=𝑓𝑎∧𝑞1𝑦=𝑔𝑏}

)

Example 3.4
The functor D0 has as left adjoint the functor taking a category to its set of
connected components. This extends to a normal oplax double functor π0 ∶
Cat → Span(Set0). A profunctor M ∶ 𝔸 ⇸ 𝔹 goes to a span (∂− , ∂+) ∶ π0𝔸 ⇸
π0𝔹 with apex set π0M, where a heteromorphism 𝑥 ∶ M (A ⤍ B) gets sent to
its equivalence class [𝑥] ∈ π0M with ∂−[𝑥] = [A] ∈ π0𝔸 and ∂+[𝑥] = [B] ∈ π0𝔹,
and such that for each 𝑎 ∶ 𝔸 (A′ → A) and 𝑏 ∶ 𝔹 (B → B′) we have [𝑥] =
[M (𝑎 ⤍ 𝑏)(𝑥)]. This is well defined because the existence of 𝑎 and 𝑏 imply the
identifications [A′] = [A] and [B] = [B′], in π0𝔸 and π0𝔹, respectively. A natural
transformation α ∶ M → (F° × G) ⋅ N goes to the function π0α ∶ π0M → π0N
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such that for 𝑥 ∶ M (A ⤍ B) we have π0α[𝑥] = [α(A , B)(𝑥)] and the following
diagram commutes.

π0𝔸 π0𝔹

π0𝕏 π0𝕐

π0M

π0Nπ0F π0G

∂− ∂+

∂− ∂+

π0α

The nullary comparitors θ0ℂ ∶ π0(ℂ (− → −)) → π0ℂ are the bijections of sets
determined by the connected components. The oplax binary comparitors

π0𝔸 π0ℂ

π0(M ⊙ N)

π0𝔸 π0𝔹 π0ℂ
π0M π0N

π0M ⊙ π0N
θ2

∂− ∂+

id id

act on consecutive heteromorphisms 𝑥 ∶ M (A ⤍ B) and 𝑦 ∶ N (B ⤍ C) by
sending [𝑥 ⋅ 𝑦] ∈ π0(M⊙N) to its equivalence class in the pullback π0M⊙π0N =
{(𝑠 , 𝑡) ∈ π0M × π0N | ∂+𝑠 = ∂−𝑡}, where the consecutivity of 𝑥 and 𝑦 implies
∂+[𝑥] = ∂−[𝑦] in π0𝔹. We generally don’t have comparitors going the other way.
For example, if 𝔸 and ℂ are singleton categories, 𝔹 is the walking arrow 𝑖 ∶ 0 → 1,
the profunctor M ∶ 𝔸 ⇸ 𝔹 contains only one heteromorphism 𝑥 ∶ M (A ⤍ 1)
and likewise N ∶ 𝔹 ⇸ ℂ contains only 𝑦 ∶ N (0 ⤍ C), then π0M ⊙ π0N is a
singleton set while π0(M ⊙ N) is empty, so it is hopeless to seek a function from
the former to the latter.

There is a construction to reify the heteromorphisms of a profunctor into arrows
of a category [BS00].

Definition 3.4 (collage category)
The collage category of a profunctor M ∶ 𝔸 ⇸ 𝔹 is a category Col M with the
following structure.

objects: the disjoint union of 𝔸-objects and 𝔹-objects,

arrows: the disjoint union of 𝔸-homomorphisms, 𝔹-homomorphisms, and M-
heteromorphisms:

Col M (X → Y) ≔

⎧{{
⎨{{⎩

𝔸 (X → Y) if X, Y ∶ 𝔸
𝔹 (X → Y) if X, Y ∶ 𝔹
M (X ⤍ Y) if X ∶ 𝔸 and Y ∶ 𝔹
∅ if X ∶ 𝔹 and Y ∶ 𝔸

identities: inherited from 𝔸 and 𝔹,

composition: for consecutive (Col M)-arrows 𝑓 and 𝑔,
• if both are 𝔸-arrows then the composition 𝑓 ⋅ 𝑔 is inherited from 𝔸,
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• if both are 𝔹-arrows then the composition 𝑓 ⋅ 𝑔 is inherited from 𝔹,

• if 𝑓 ∶ 𝔸 (A′ → A) and 𝑔 ∶ M (A ⤍ B) then 𝑓 ⋅ 𝑔 ∶ Col M (A′ → B) ≔
M (𝑓 ⤍ B)(𝑔) ∶ M (A′ ⤍ B),

• if 𝑓 ∶ M (A ⤍ B) and 𝑔 ∶ 𝔹 (B → B′) then 𝑓 ⋅ 𝑔 ∶ Col M (A → B′) ≔
M (A ⤍ 𝑔)(𝑓) ∶ M (A ⤍ B′).

The associativity and unitality of composition in Col M follow from the respec-
tive properties in 𝔸 and 𝔹 together with the functoriality of M. We refer to the
inclusion functors as ι0M ∶ 𝔸 → Col M and ι1M ∶ 𝔹 → Col M. The inclusion
of profunctor heteromorphisms as collage arrows is a natural transformation
between profunctors ηM ∶ (𝔸° × 𝔹 → Set) (M → Col M (ι0− → ι1−)), which is
to say a square in M

ι0M◇
ι1M
U(Col M). Together, a collage category and its inclusions

satisfy a universal property dual to that of (3.5), making the collage category a
cotabulator for a profunctor.

Because we can form both pushouts of functors and collages of profunctors,
by a result dual to proposition 3.3 there is a canonical oplax double functor
⊥ ∶ Cat → Cospan(Cat0) that is the identity functor on Cat0 and takes
profunctors to their collage cospans.

We can view the left half of equation (2.1) as a commuting diagram in the
collage category ⊥M, and similarly its right half in ⊥N, but we cannot interpret
the diagram as a whole in ⊥(M ⊙ N). We can, however, interpret it in the
category ⊥M ⊙ ⊥N, sometimes called the gamut of M and N, which is given by
the following pushout in Cat [Gra19]:

𝔸 𝔹 ℂ

⊥M ⊥N

⊥M ⊙ ⊥N

ι0 ι1 ι0 ι1

𝑚 𝑛∧

By the dual of (3.5), the universal property of the cotabulator determines a
canonical functor from the collage to the gamut, θ2(M , N) ∶ ⊥(M ⊙ N) →
⊥M ⊙ ⊥N as follows, where the highlighted arrow equality is the pushout above.

ι0M

𝑛

ι1N

𝑚

M N

=
ηM ηN

𝔸
𝔹

ℂ

⊥M ⊥N

⊥M ⊙ ⊥N

=
ι0 ι1

M N

θ2 θ2

η(M ⊙ N)
𝔸 𝔹 ℂ

⊥(M ⊙ N)

⊥M ⊙ ⊥N

This functor is the comparitor component of the oplax cotabulator functor ⊥ ∶
Cat → Cospan(Cat0) and acts by inclusion.

4 Connection Structures
Arrows and proarrows of a double category may be related to one another in
various ways. Of particular interest is the case where a morphism of one sort
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has a “twin” of the other sort that acts like its reflection across the diagonal or
antidiagonal of a square. Such a connection structure forms half of an adjunction
structure in a precise way. Connection structures on pseudo double categories
were investigated by Grandis and Paré in [GP04], their universal properties were
described by Shulman in [Shu08], and their graphical calculus was explored by
Myers in [Mye16].

Definition 4.1 (companion morphism)
In a double category, a parallel arrow 𝑓 ∶ A → B and proarrow M ∶ A ⇸ B are
companions if there are connection squares

A A

A B
id 𝑓

U

M

⌜𝑓 ⋅ and
A B

B B
𝑓 id

M

U

⋅𝑓⌟

satisfying the companion laws ⌜𝑓 ⋅ ⋅ ⋅𝑓⌟ = U(𝑓) and ⌜𝑓 ⋅ ⊙ ⋅𝑓⌟ ≅ id(M):

𝑓
M

𝑓⌜𝑓 ⋅

⋅𝑓⌟
= 𝑓 𝑓 and

M

𝑓

M

⌜𝑓 ⋅
⋅𝑓⌟ =

M

M
λ

ρ−1
(4.1)

Companions, when they exist, are unique up to a canonical isomorphism.

Lemma 4.2 (uniqueness of companion morphisms)
If arrow 𝑓 ∶ A → B has companion proarrow M0 with connection squares ⌜𝑓 ⋅0
and ⋅𝑓⌟0 and also has companion proarrow M1 with connection squares ⌜𝑓 ⋅1 and
⋅𝑓⌟1 then (up to coherators) the proarrow disks ⌜𝑓 ⋅1 ⊙ ⋅𝑓⌟0 ∶ M0 → M1 and
⌜𝑓 ⋅0 ⊙ ⋅𝑓⌟1 ∶ M1 → M0 form an isomorphism.

Proof. For {𝑖, 𝑗} = {0, 1}, we have:

M𝑖

𝑓
M𝑗

𝑓
M𝑖

⌜𝑓 ⋅𝑗

⋅𝑓⌟𝑗⌜𝑓 ⋅𝑖

⋅𝑓⌟𝑖

≅

M𝑖

𝑓

M𝑖

⌜𝑓 ⋅𝑖
⋅𝑓⌟𝑖 ≅

M𝑖

M𝑖

This justifies the convention of referring to the companion proarrow of an arrow
𝑓 , which we will write as “ ̂𝑓”. Dually, we have the uniqueness of a companion
arrow for a given proarrow. We will call an arrow or proarrow of a double
category companionable if it has a companion morphism of the opposite sort.
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This characterization of the companion relation, from [GP04], is algebraic in the
sense of being presented by generators and relations. Equivalently, companion-
ship can be characterized by universal properties, providing unique factorization
by connection squares. That is the approach taken by Shulman in [Shu08].

Lemma 4.3 (unique factorization by connection squares)
For any square α ∶ M

𝑓◇
𝑔
N,

• if 𝑓 is companionable then there is a unique square λ ∶ M
id
◇𝑔

̂𝑓⊙N with
λ ⋅ (⋅𝑓⌟ ⊙ N) ≅ α,

• if 𝑔 is companionable then there is a unique square ρ ∶ M⊙ ̂𝑔
𝑓◇

id
N with

(M ⊙ ⌜𝑔⋅) ⋅ ρ ≅ α.

Proof. For the first of these dual results, observe that any square λ with the
stated property must be (up to coherators) ⌜𝑓 ⋅ ⊙ α:

̂𝑓

𝑔

M

N

λ ≅

̂𝑓

𝑔
M

N
⌜𝑓 ⋅

⋅𝑓⌟

λ
≅

̂𝑓

𝑔

M

N

α⌜𝑓 ⋅

and that ⌜𝑓 ⋅ ⊙ α does indeed have the property:

𝑓

𝑔

M

N
⋅𝑓⌟

⌜𝑓 ⋅ α ≅ 𝑓 𝑔

M

N

α

In a double category, the companionable morphisms of a given sort form a wide
subcategory of the respective edge category with

𝑓 ⋅ 𝑔

𝑓 ⋅ 𝑔

⋅𝑓 ⋅ 𝑔⌟ = 𝑓

̂𝑓

𝑔

̂𝑔

⋅𝑓⌟
⋅𝑔⌟

,

𝑓 ⋅ 𝑔

𝑓 ⋅ 𝑔⌜𝑓 ⋅ 𝑔⋅ =

̂𝑓

𝑓

̂𝑔

𝑔
⌜𝑓 ⋅

⌜𝑔⋅

and

id(A)

̂id(A)

⋅id(A)⌟ = id2(A) =

̂id(A)

id(A)⌜id(A)⋅
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The companion relation links not just the 1-dimensional structure of a double
category’s edge categories, but the 2-dimensional structure of its disk bicate-
gories as well.

Definition 4.4 (companion disk)
Given an arrow disk α ∶ 𝑓 ⇸ 𝑔 with companionable boundary arrows, we define
its companion proarrow disk α̂ ∶ ̂𝑔 → ̂𝑓 to be (up to coherators) ⌜𝑓 ⋅ ⊙ α ⊙ ⋅𝑔⌟:

̂𝑓

̂𝑔

α̂ ≅

̂𝑓

𝑓 𝑔
̂𝑔

⌜𝑓 ⋅ α ⋅𝑔⌟

Dually, for a proarrow disk β ∶ ̂𝑔 → ̂𝑓 with companionable boundary proarrows,
its companion arrow disk is given by ⌜𝑔⋅ ⋅ β ⋅ ⋅𝑓⌟ ∶ 𝑓 ⇸ 𝑔.

Any disk with companionable boundary morphisms is itself companionable.
Thus we obtain an equivalence between the sub-bicategories of the arrow- and
proarrow disk bicategories with companionable morphisms, which is covariant
on morphisms and contravariant on disks:

α̂ ⊙ β ≅

̂𝑓

𝑔

ℎ̂

⌜𝑓 ⋅ α β ⋅ℎ⌟ =

̂𝑓

̂𝑔

ℎ̂

⌜𝑓 ⋅ α ⋅𝑔⌟

⌜𝑔⋅ β ⋅ℎ⌟
≅

̂𝑓

̂𝑔

ℎ̂

α̂

β̂
= β̂ ⋅ α̂

Intuitively, the companion relation provides a canonical way to reflect structure
in a double category across the main diagonal of a square. We can reflect
structure across a square’s antidiagonal as well.

Definition 4.5 (conjoint morphism)
In a double category, an antiparallel arrow 𝑓 ∶ A → B and proarrow M ∶ B ⇸ A
are conjoints if there are (co)connection squares

B A

B B
id 𝑓

M

U

⌞𝑓 ⋅ and
A A

B A
𝑓 id

U

M

⋅𝑓⌝

satisfying the conjoint laws ⋅𝑓⌝ ⋅ ⌞𝑓 ⋅ = U(𝑓) and ⌞𝑓 ⋅ ⊙ ⋅𝑓⌝ ≅ id(M):

𝑓
M

𝑓

⋅𝑓⌝

⌞𝑓 ⋅

= 𝑓 𝑓 and

M

𝑓

M

⌞𝑓 ⋅
⋅𝑓⌝ =

M

M

ρ

λ−1
(4.2)
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All constructions and results involving companions have duals for conjoints,
obtained by reversing the orientation of either 𝔻0 or 𝔻1 (but not both!). We will
write the conjoint proarrow to a conjoinable arrow 𝑓 ∶ A → B as ̌𝑓 ∶ B ⇸ A, and
the conjoint proarrow disk to a conjoinable arrow disk α ∶ 𝑓 ⇸ 𝑔 as α̌ ∶ ̌𝑓 → ̌𝑔.

A double category in which every arrow has both a companion and a conjoint
proarrow is a structure known variously as a proarrow equipment [Woo82], a
framed bicategory [Shu08], or a fibrant double category [Ale18]. The results in
this section are all standard in the literature of proarrow equipment. However,
we wish to emphasize that they obtain locally: we need not assume the existence
of companions or conjoints for all arrows in order to exploit their properties for
those morphisms that do have them.

All of the double categories considered in section 2 have companions for all
arrows, and all but the quintets have all conjoints as well.

Example 4.1 (connection structure in Set)
In the double category Set the companion to a function 𝑓 ∶ A → B is the
relation given by ∀ 𝑎 ∈ A . ̂𝑓 (𝑎 ⤍ 𝑓𝑎) ∶ A ⇸ B, which is simply the result of
regarding the correspondence given by 𝑓 as a relation rather than as a function.
The conjoint relation is given by ∀ 𝑎 ∈ A . ̌𝑓 (𝑓𝑎 ⤍ 𝑎) ∶ B ⇸ A.

The relations ̂𝑓 and ̌𝑓 form a converse pair that are logically equivalent for
purely structural reasons. Recall that any relation R ∶ A ⇸ B has a converse
relation R𝑐 ∶ B ⇸ A such that R𝑐 (𝑏 ⤍ 𝑎) ⟺ R (𝑎 ⤍ 𝑏).

Example 4.2 (connection structure in span double categories)
In a span double category the companion to an arrow 𝑓 ∶ A → B is the span
(A , 𝑓) ∶ A ⇸ B with

⌜𝑓 ⋅ = A A

A B

A

A 𝑓
𝑓

and ⋅𝑓⌟ = A B

B B

A

B𝑓

𝑓

𝑓

where the unlabeled endomorphisms are identities. The conjoint structure is
just the horizontal reflection, with ̌𝑓 = (𝑓 , A).

Example 4.3 (connection structure in quintet double categories)
In a quintet double category the companion to an arrow 𝑓 ∶ A → B is 𝑓 itself,
but now regarded as a proarrow. The connection squares are both the identity
disk on 𝑓 , factored as the squares U

id◇
𝑓

̂𝑓 and ̂𝑓
𝑓◇

id
U , respectively.

A conjoint for 𝑓 would be a morphism 𝑔 ∶ B → A, together with coconnection
squares factoring ⋅𝑓⌝ ∶ id(A) → 𝑓 ⋅ 𝑔 and ⌞𝑓 ⋅ ∶ 𝑔 ⋅ 𝑓 → id(B), and satisfying

𝑔

𝑔
⋅𝑓⌝

⌞𝑓 ⋅

=

𝑔

𝑔

and

𝑓

𝑓

⋅𝑓⌝

⌞𝑓 ⋅

=

𝑓

𝑓
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which is to say, a right adjoint to 𝑓 .

Example 4.4 (connection structure in Cat)
In the double category Cat the companion and conjoint to a functor F ∶ 𝔸 → 𝔹
are the represented profunctors 𝔹 (F− → −) ∶ 𝔸° × 𝔹 → Set and 𝔹 (− → F−) ∶
𝔹° × 𝔸 → Set, respectively.

Note that the profunctors F̂ and F̌ do not generally form a converse pair, as
they do in Set. Any profunctor M ∶ 𝔸 ⇸ 𝔹 does indeed have a converse M𝑐,
but it lives in 𝔹° ⇸ 𝔸°:

𝔸 ⇸ 𝔹 ≔ 𝔸° × 𝔹 → Set ≅ 𝔹× 𝔸° → Set = 𝔹°° × 𝔸° → Set ≕ 𝔹° ⇸ 𝔸°

In each of these examples, the companion-conjoint pair for a given arrow forms
an adjunction in the proarrow disk bicategory. This is true in general, for any
double category arrow 𝑓 , it is the case that ̂𝑓 ⊣ ̌𝑓 , with the unit and counit
formed by η = ⌜𝑓 ⋅ ⊙ ⋅𝑓⌝ and ε = ⌞𝑓 ⋅ ⊙ ⋅𝑓⌟, respectively.

Just as tabulators give us a canonical double functor from a double category to
its span double category (proposition 3.3), companions and conjoints give us a
canonical double functor going the other way.

Proposition 4.6
If a double category 𝔻 has companions, conjoints, and pullbacks for arrows
then there is a canonical normal oplax double functor Span(𝔻0) → 𝔻 that is
the identity functor on 𝔻0 and takes a span (𝑝0 , 𝑝1) to the composite proarrow
𝑝0 ⊙ 𝑝1.

Proof. (idea)

• On squares the double functor acts as follows:

A B

X Y

P

R𝑓 𝑔

𝑝0 𝑝1

𝑟0 𝑟1

α ⟼
𝑓

α

𝑔

𝑝0

𝑟0 𝑟1

𝑝1

= =
⌞𝑝0

⋅ ⋅𝑝1⌟

⋅𝑟0⌝ ⌜𝑟1⋅

• For any object we obtain the following nullary oplax comparitor, which is
invertible because ⌞id⋅ and ⋅id⌟ are both just the identity square, id2.

ǐd

id

îd

⌞id⋅ ⋅id⌟

• For the composition of spans shown on the left, we obtain the binary oplax
comparitor shown on the right, where the arrow equality is the commuting
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pullback square.

A B C
P Q

M
𝑝0

𝑝1 𝑞0

𝑞1

𝑝′ 𝑞′
𝑝0

𝑝0 𝑝1

𝑞′𝑝′

𝑞0 𝑞1

𝑞1

=
⌞𝑝′⋅

⌜𝑝1⋅

⋅𝑞′⌟

⋅𝑞0⌝

5 Connection Structure Preservation
The connection structure afforded by companions and conjoints in a double
category is quite rich, and it is natural to ask what sorts of double functors
preserve it. It turns out that any lax or oplax double functor preserves this
structure, so long as it weakly preserves identity proarrows; that is, so long as
it is normal.

Proposition 5.1
Normal lax double functors preserve companions, in the sense that for any
normal lax double functor F ∶ ℂ → 𝔻 if morphisms 𝑓 ∶ A → B and M ∶ A ⇸ B
are companions in ℂ then the morphisms F𝑓 and FM are companions in 𝔻.

Proof. We take for connection squares of the F-images,

FM

F𝑓⌜F𝑓 ⋅ ≔

FM

F𝑓

θ0

F⌜𝑓 ⋅ and F𝑓

FM

⋅F𝑓⌟ ≔ F𝑓

FM

θ0
−1

F⋅𝑓⌟

These connections satisfy the companion laws:

F𝑓

F𝑓F⌜𝑓 ⋅

F⋅𝑓⌟

θ0

θ0
−1

(4.1)= F𝑓 F𝑓F(U𝑓)

θ0

θ0
−1

(3.1)=

F𝑓 F𝑓

θ0

θ0
−1

=
F𝑓 F𝑓
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and

FM

FM

λ−1

θ0

F⌜𝑓 ⋅ F⋅𝑓⌟

θ0
−1

ρ

(3.3)=

FM

FM

λ−1

θ0

F⌜𝑓 ⋅ F⋅𝑓⌟
θ0

−1

θ0

θ2

Fρ

=

FM

FM

λ−1

θ0

F⌜𝑓 ⋅ F⋅𝑓⌟

θ2

Fρ

(3.2)=

FM

FM

λ−1

θ0

θ2

F(⌜𝑓 ⋅ ⊙ ⋅𝑓⌟)

Fρ

(4.1)=

FM

FM

λ−1

θ0

θ2

Fλ

Fρ−1

Fρ

(3.3)=

FM

FM

λ−1

λ

=

FM

FM

By horizontal reflection we obtain that normal lax double functors also pre-
serve conjoints. By vertical reflection, normal oplax double functors preserve
companions and conjoints as well.

By the proposition we conclude that all of the double functors considered in
section 3 preserve companions and conjoints.

6 Conclusion and Related Work
As mentioned in the introduction, the fact that normal lax or oplax double
functors preserve the connection structure of double categories seems to be well
known; thus the value (if any) of this write-up is not in the result itself, but
rather in the direct, algebraic presentation and the perspicuity afforded by the
graphical language of dual pasting diagrams. Here is a summary of the results on
preservation of connection structure by double functors of which I am presently
aware.

In [GP04] Grandis and Paré mention in passing that strictly unitary lax and
oplax double functors preserve companions.
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In [Shu08] Shulman develops the theory of framed bicategories from a non-
algebraic perspective; that is, defined by universal properties rather than pre-
sented by generators and relations. There, he proves them equivalent to double
categories with companions and conjoints for all arrows. In framed bicategories
companions and conjoints are not primitive, but rather defined in terms of
cartesian or opcartesian squares, which are universal squares specified by their
boundary but missing one proarrow face. From our perspective, we can think
of them as being given by

𝑓 𝑔

N

𝑓∗N𝑔∗

cart
A

B

C

D
= 𝑓

̂𝑓 ̌𝑔

𝑔

N

N

⋅𝑓⌟ ⌞𝑔⋅
A

B

C

D
and 𝑓 𝑔

M

𝑓!M𝑔!

opcart
A

B

C

D
= 𝑓

̌𝑓 ̂𝑔

𝑔

M

M

⋅𝑓⌝ ⌜𝑔⋅

A

B

C

D

Shulman mentions that normal lax functors between framed bicategories pre-
serve companions up to isomorphism, in the sense that there is an invertible
proarrow disk F ̂𝑓 → F̂𝑓 , where the companion of F𝑓 exists because all arrows
in a framed bicategory are companionable. He also proves that any lax dou-
ble functor between framed bicategories preserves cartesian squares. In [Ale18]
Aleiferi generalizes this setting to arbitrary double categories and shows that
any lax double functor with a lax left adjoint preserves cartesian squares.

Niefield shows in [Nie12] that for any double category 𝔻 with arrow pull-
backs, the identity functor on 𝔻0 extends to a normal oplax double functor
Span(𝔻0) → 𝔻 just in case 𝔻 has companions and conjoints for all arrows.
From our perspective, since we know that Span(𝔻0) itself has all companions
and conjoints and that any normal oplax double functor must preserve them,
the existence of such a double functor extending id(𝔻0) implies that 𝔻 must
have them as well, giving us half of this result as a corollary. The other half is
proposition 4.6.
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