
.
Wesleyan University

.

An Adjunction-Theoretic Foundation for Proof Search in
Intuitionistic First-Order Categorical Logic Programming

By
Edward Morehouse

Faculty Advisor: Dr. James Lipton

A Dissertation submitted to the Faculty of Wesleyan University
in partial fulfillment of the requirements for the degree of Doctor of Philosophy

.
Middletown, Connecticut April 2013
.

i

To my parents, without whose love and support this would not have been possible.

ii

ACKNOWLEDGEMENTS

My path to this thesis has been longer and harder than I could have imagined when I
set out. But as with any journey of discovery, nor could I have imagined all the wonderful
things that I would encounter along the way.

I’d like to thank my thesis advisor, Jim Lipton, for standing by me throughout the
journey, and the other members of my committee, Norman Danner and Mark Hovey, for
helping to steer me to its successful conclusion. I am grateful for the resources that they
and the rest of the department have invested in me over the years. I feel privileged to have
known my fellow travelers, the other graduate students with whom I overlapped during
my time at Wesleyan, and especially my officemate and friend of many years, Weiwei Pan,
whose curiosity, determination and kindness have inspired me to persevere even when the
road ahead seemed too difficult to go on.

I would not have found my way out of the wilderness were it not for a number of fortuitous
encounters. I owe a huge debt of thanks to Gianluca Amato and Francesca Scozzari for
hosting me at the University of Pescara in 2012. The opportunity that visit provided me
to attend conferences and meet people in my field throughout Europe was invaluable to the
development of this work, as was Gianluca’s uncanny ability to find counterexamples to my
not always very well thought-through “theorems”. I also owe much to the organizers and
instructors of the Oregon Programming Languages Summer School, which has provided a
great service to a generation of of budding theoretical computer scientists, and I hope will
continue to do so in the future. It was during one of Frank Pfenning’s lectures on proof
theory there that I first became aware of the connection between derivation systems and
adjunctions, which is the seed from which this thesis grew.

The path that lies before me now feels more uncertain than ever, but I am eager to see
where it may lead. Life is, after all, all about the journey.

iii

Abstract

In this thesis we compose a proof-theoretic approach to logic programming with a
category-theoretic approach to proof theory. This allows us to present the computation
mechanisms of several systems of logic programming as proof search strategies within
an intuitionistic first-order sequent calculus with logic variables and to analyze aspects
of their behavior algebraically.

Beginning from the basic categorical construction of an adjunction, we present
Gentzen’s formal derivation system of natural deduction for intuitionistic first-order
logic as a categorical graphical language, in which equivalence classes of derivations
under the usual relations of convertibility correspond precisely to arrows in a freely-
generated hyperdoctrine categorical semantics. We show that the inference rules and
conversion relations on derivations have uniform adjoint-theoretic interpretations, and
that the connectives are naturally partitioned into two chiral classes, depending on
whether they are characterized by a right or a left adjoint functor. We observe that the
adjoint-theoretic descriptions of the non-invertible rules for quantifiers each decompose
their natural deduction counterpart into a purely logical rule and a substitution.

By using the same categorical semantics for the formal derivation system of se-
quent calculus, we are able present a version in which the generic parameters, logic
variables and substitutions of logic programming are given first-class status. This in
turn allows us to present the operational semantics of SLD-resolution for Horn logic
(the logic underlying the programming language Prolog), and that of uniform proof
for hereditarily Harrop logic (the first-order fragment of the logic underlying the pro-
gramming language -Prolog), as search strategies in this sequent calculus. We show
that the adjoint-theoretic description of the connectives permits a natural extension
of the strategy of uniform proof to a syntactically richer language, which we call the
language of constructive sequents.

We adopt Andreoli’s idea of focused proof search from linear logic as a search
strategy for intuitionistic logic within our sequent system, where it becomes a natural
generalization of the strategy of uniform proof. We show that one of the two princi-
ples underlying focusing is immediately justified by the adjoint-theoretic properties of
the connectives. We compare this focused proof search strategy with a different one
proposed by Dyckhoff and Pinto in the context of the input-output semantics of logic
programming.

Contents

Abstract iii

Contents iv

1 Introduction 1
1.1 Context . 1
1.2 Methodology and Results . 3
1.3 Outline . 4

2 Harmony in Gentzen’s Proof Theory 7
2.1 Derivations in Gentzen Systems . 7
2.2 Natural Deduction . 8
2.3 Harmony of the Connectives . 11

3 Categorical Constructions 18
3.1 Adjunctions . 18
3.2 Comonads . 26
3.3 Bicartesian Closed Categories . 30
3.4 Indexed Categories . 34

4 Categorical Intuitionistic First-Order Logic 39
4.1 The Categorical Interpretation of Logic . 39
4.2 Interpreting the Propositional Connectives . 41
4.3 Interpreting the Term Language . 42
4.4 Interpreting Predicates . 46
4.5 Interpreting Quantification . 48
4.6 The Hyperdoctrine Interpretation . 49
4.7 Posetal Hyperdoctrines . 52

5 Natural Deduction by Adjunction 57
5.1 Conjunction . 61

iv

CONTENTS v

5.2 Disjunction . 63
5.3 Truth . 67
5.4 Falsehood . 68
5.5 Implication . 70
5.6 Universal Quantification . 72
5.7 Existential Quantification . 75
5.8 Genericity of Free Hyperdoctrines . 79

6 Categories for Cartesian Logics 82
6.1 Meta-Theoretic Considerations . 83
6.2 The Kleisi Category Prop . 83
6.3 The Polynomial Category Prop[𝑥] . 84

7 Categorical Sequent Calculus 86
7.1 Intuitionistic Sequent Calculus . 87
7.2 Sequent Calculus in Hyperdoctrines . 89
7.3 An Indexed Sequent Calculus . 97
7.4 Indexed Sequent Tactics in Coq . 105

8 Proof Search Strategies 109
8.1 SLD-Resolution for Horn Logic . 110
8.2 Uniform Proof for Hereditarily Harrop Logic 115
8.3 Constructive Sequents . 118
8.4 Focused Proof Search . 123

9 Conclusion, Related and Future Work 135

A Categorical Notation 138

B Indexed Sequent Tactics in Coq 142

Bibliography 154

Index 159

Chapter 1

Introduction

This thesis straddles the fields of categorical logic and logic programming, placing it some-
where in the synthetic field of “categorical logic programming”, as it were. It does this by
composing a proof-theoretic approach to logic programming with a category-theoretic ap-
proach to proof theory. In themselves, neither of these perspectives is novel, but we believe
that the composition permits a useful, algebraic, point of view to logic programming that
has been under-appreciated and thus underutilized.

The conceptual heart of this work is the idea that we can reflect the categorical se-
mantics of intuitionistic first-order logic embodied in the structure of a hyperdoctrine (a
kind of indexed bicartesian closed category) back to the proof theory of Gentzen systems
(natural deduction and sequent calculus). In a hyperdoctrine, each universal construction
interpreting a logical connective is characterized by an adjunction. By uniformly translating
the constituent parts of these adjunctions into inference rules, we obtain systems of formal
derivation very close to the familiar Gentzen systems. However, crucially, the non-invertible
quantifier rules thus obtained decompose their Gentzen counterparts into a purely logical
rule and a substitution. By adopting the versions of these rules derived from the categor-
ical semantics, we are able to present a sequent calculus for logic programming in which
generic parameters, logic variables and substitutions are first-class citizens; that is, part of
the object-theory rather than the meta-theory of logic programming. Therefore, this work
can be seen as a contribution to the abstract syntax of logic programming, since it gives a
declarative, algebraic accounting of formerly meta-logical operations.

1.1 Context

Logic programming has its roots in classical clausal logic, where the resolution method is
used to show that a conjecture is a consequence of a set of assumptions by proving the
unsatisfiability of the negation of the conjecture together with those assumptions [Llo84].

1

CHAPTER 1. INTRODUCTION 2

Unfortunately, this technique relies on the model theory of classical clausal logic and does
not have a direct extension to other logical systems. However, there is a classically equivalent
presentation of clausal logic, formulated in terms of implication and positive literals, which
affords better opportunities for computational and algebraic interpretation.

Logic programming systems based on classical clausal logic, such as Prolog, must resort
to extra-logical facilities in order to provide features typically found in high-level program-
ming languages. Investigating this phenomenon, Dale Miller observed that some of these
features, such as memoization, modules, abstract datatypes and local parameters, can in-
deed be given a purely logical description – but in intuitionistic, rather than classical logic
[Mil89a; Mil89b]. In hindsight, the appeal of intuitionistic logic in applications of automated
deduction should be apparent. After all, intuitionism was conceived by Brouwer as the logic
of constructive mathematics.

The transition from classical to intuitionistic logic suggests the transition from a model-
theoretic to a proof-theoretic perspective as well. It had long been argued by Dyckhoff,
Pfenning, Miller and others that proof theory, rather than model theory, provides the best
foundations for logic programming. There are deep connections between intuitionistic logic,
in the form of natural deduction, and computation, in the form of the typed λ-calculus,
described by the Curry-Howard correspondence [How80]. This provides a natural congruence
relation on derivations, allowing us to determine when two syntactically distinct proofs are
“essentially the same”. Some such relation on derivations is essential to a proof-theoretic
foundation for logic programming since searching the space of all syntactically distinct proofs
is generally neither feasible nor desireable. That space tends to be quite large and to contain
considerable redundancy in the form of distinct proofs with the same input-output behavior.
It has been argued that normal natural deduction derivations – corresponding to normal
typed λ-terms – should be considered to be the “real proof objects” [GLT89; DP99].

Categorical logic effectively erases the distinction between proof theory and model theory.
Proof theory becomes equivalent to an initial model. While in the category of sets, first-
order theories do not necessarily have initial models, given an appropriate category, this is
no longer the case. Categorical approaches to proof theory are nothing new, going back at
least to the work of Lawvere [Law69], Lambek [Lam68], Seely [See83] and Makkai [Mak93b],
among others. However, categorical proof theory continues to be an active area of research,
especially with respect to dependently typed intuitionistic logics underlying automated proof
assistants such as Coq, realizability models for classical logics, and linear logic with its deep
connections to quantum mechanics [BS09].

Just as a set theorist might ask, why study proofs when we have models, a proof theorist
might ask, why study proofs categorically rather than as trees, tableaux, nets, etc.. To this,
the best response we have heard comes from Paul-André Melliès [Mel09]:

CHAPTER 1. INTRODUCTION 3

In this atomic vision of logic, proof theory becomes a linguistic laboratory,
where one studies the logical connectives defined by tradition, and tries to de-
compose them as molecules of elementary particles[...]. This quest is driven by
the hypothesis that these basic particles of logic should be regulated by purely
algebraic principles, capturing the essence of language and interactive behav-
iors. Seen from this angle, categorical semantics becomes the cornerstone of
proof theory, extracting it gradually from its idiosyncratic language (sequent
calculus, etc.) and offering a promising bridge with contemporary algebra.

We believe that by exposing this algebraic structure behind the syntax of formalized proof,
the categorical perspective has much to offer the study of proof search, and by extension,
logic programming.

1.2 Methodology and Results

In this thesis we tame the great potential complexity involved in categorical approaches to
proof theory in four basic ways. First, we limit our attention to typed intuitionistic first-
order logic. Next, we take the categorical notion of adjunction as a starting point for inter-
preting Gentzen’s systems of natural deduction and sequent calculus. Third, we consider
derivations modulo βη-equivalence, thereby keeping the category theory one-dimensional.
Finally, we consider a sequent calculus very close to natural deduction, encapsulating the
complications introduced by more exotic sequent systems within a notion of “strategy”.
These choices allow us to present a simple, flexible and extensible framework for the cate-
gorical treatment of proof search and logic programming.

As a result, we are able to present a novel “indexed” sequent calculus, in which the meta-
theoretic notions of generic parameter, logic variable and substitution are given first-class
status. We use this indexed sequent calculus to present the logic programming computation
mechanisms of SLD-resolution and uniform proof as simple search strategies and observe
that the strategy of uniform proof is complete for an even larger language, which we call
“constructive sequents”. Additionally, we apply Andreoli’s principles of focusing [And92]
to this system to present a complete search strategy for full intuitionistic first-order logic.
This strategy has a much smaller search space than that of the naïve strategy of building
all possible derivation trees.

The foundation for all of this is a new perspective on the classification of the inference
rules of Gentzen systems. Rather than the introduction–elimination or right–left dichotomy
typical in proof theory, we present a classification based on the concept of connective chi-
rality, which only becomes apparent when connectives are seen from the perspective of their
adjoint-theoretic characterizations. From this perspective, the inference rules and derivation

CHAPTER 1. INTRODUCTION 4

conversions of natural deduction can be formulated uniformly in terms of the adjunctions
characterizing the connectives. This adjoint-theoretic description of derivations extends to
sequent calculus as well. In both systems, the adjoint-theoretic descriptions of the non-
invertible quantifier rules decompose their traditional versions into a purely logical rule and
a substitution. It is by reflecting this decomposition back into proof theory that we obtain
our indexed sequent calculus.

From the adjoint-theoretic perspective, issues such as the harmony of connectives be-
come quite straightforward, proof search strategies that eagerly apply natural isomorphisms
become obvious, and much else follows. We believe that the methods and results of this
thesis are only examples of what may be achieved by composing a categorical perspective
of proof theory with a proof-theoretic perspective of logic programming.

1.3 Outline

A brief outline of the rest of this thesis follows.

In chapter 2 we introduce Gentzen’s derivation system of natural deduction, including
the concept of connective harmony and the permutation conversions. Together these ac-
count for many of the system’s proof-theoretic properties. Among these properties, the
unique normalization of derivations is of particular importance as it provides a congruence
relation on derivations, the equivalence classes of which will coincide with the arrows in our
categorical semantics.

In chapter 3 we summarize some of the categorical constructions used in the sequel.
Most important among these is the concept of adjunction, which we will use to interpret all
of the connectives of intuitionistic first-order logic. The closely-related notion of comonad
is used to give a clear and modular interpretation to the property of this logic of being
cartesian, as opposed to linear, which loosely means that it is free from considerations of
resource accounting. The brief introduction to bicartesian closed categories summarizes
the categorical constructions that will be used to interpret intuitionistic propositional logic
(without quantifiers). Indexed categories, also introduced in this chapter, will be used to
provide interpretations for substitution and quantification.

In chapter 4 we present the hyperdoctrine interpretation of intuitionistic first-order logic.
This is based on an indexed category first described by William Lawvere that has facilities
for interpreting universal and existential quantifiers. The version of hyperdoctrine that we
present differs slightly from the original concept since the logic we wish to interpret includes
disjunction and falsehood, but not equality. We present two examples of the concept of
hyperdoctrine, in the forms of the subset hyperdoctrine and the sieve hyperdoctrine, which

CHAPTER 1. INTRODUCTION 5

correspond respectively to the set-based semantics of classical model theory and a presheaf
semantics commonly used in categorical logic.

Chapter 5 provides the foundation for the rest of the thesis. There, we show how
each of the connectives of intuitionistic first-order logic may be understood to arise from
an adjunction and that natural deduction inference rules and derivation conversions may
be “read off” of this adjunction in a uniform way. This leads to the insight that, from
one perspective at least, the primary difference between connectives governing their proof-
theoretic behavior is whether they are characterized by a right or a left adjoint functor. This
in turn leads us to the concept of connective chirality, which will be very useful for reasoning
about proof search strategies in the sequel. We observe that the non-invertible inference
rules of quantification derived from adjunctions decompose their traditional versions into a
purely logical part and a substitution. Finally, in this chapter we demonstrate the genericity
of freely-generated hyperdoctrines, which is what allows us to conduct proof theory in a
categorical setting.

In the brief chapter 6 we consider the fact that the proof theory we have been consid-
ering is cartesian rather than linear, in the sense that assumptions may be duplicated and
discarded at will without requiring an accounting. This property turns out to be a less
than ideal fit for the categorical interpretation we have presented, necessitating some rather
tedious “context shuffling”. Fortunately, the categorical construction of comonad is able to
encapsulate this, at the cost of interpreting our logic in a slightly different category. Two
ways of doing this are discussed.

Chapter 7 introduces Gentzen’s derivation system of sequent calculus and extends our
categorical interpretation of the proof theory of intuitionistic first-order logic from chapter
5 to this system. Here, the connection between the adjoint-theoretic and proof-theoretic
semantics is not quite as direct. In particular, the left rules for conjunction and implication
are different from, though equivalent to, those we would get by a direct translation. We also
see that, as in natural deduction, the non-invertible sequent rules for quantifiers incorporate
a term instantiation that is not a part of the corresponding adjoint-theoretic description.
By following the categorical semantics more faithfully, we decompose these rules into a
purely logical part and a substitution part that need not be applied together. This leads
us to the formulation of an indexed sequent calculus in which the context variables and
reindexings of the hyperdoctrine interpretation have first-class status. It is revealed that
these context variables interpret both the generic parameters and logic variables that arise
in logic programming; the only difference being the parity of the chirality of the quantifier
rule bringing a variable into scope with that of the quantifier. In this regard, there is seen
to be a perfect symmetry between the two quantifiers.

Chapter 8 examines the logical systems of Horn logic and hereditarily Harrop logic used

CHAPTER 1. INTRODUCTION 6

in logic programming and shows how their computation mechanisms may be characterized
as proof search strategies in the indexed sequent calculus of chapter 7. Central to this
analysis is our new adjoint-theoretic understanding of the connectives, where some of their
rules are interpreted as natural isomorphisms, which may be freely permuted and eagerly
applied. We see that hereditarily Harrop logic has a natural syntactic extension, which we
call the language of constructive sequents. Finally, we see that the principles of focused
proof search, as formulated by Andreoli, give rise to a complete search strategy for all of
intuitionistic first-order logic that subsumes the other systems we have considered.

We conclude by summarizing, surveying related and possible future work, and restat-
ing our central thesis, that the algebraic characterization of proof theory afforded by the
categorical perspective provides novel insights useful in the study of proof search and logic
programming.

Chapter 2

Harmony in Gentzen’s Proof Theory

2.1 Derivations in Gentzen Systems

In the 1930s Gerhard Gentzen introduced two systems of formalized inference for proof
theory [Gen35]. The first of these, called “natural deduction”, is the subject of this chapter,
while the second, known as “sequent calculus”, is introduced in chapter 7. Intuitively,
natural deduction may be thought of as a 1-dimensional proof theory, whose objects of study
are essentially inferences between propositions. In contrast, sequent calculus may be though
of as a 2-dimensional proof theory, whose objects of study are essentially inferences between
inferences between propositions. Sequent Calculus was originally introduced to study the
meta-theory of natural deduction, but was quickly recognized as a formalism important
in its own right. These two formalisms, known together as “Gentzen systems”, share a
basic underlying structure. In Gentzen systems, derivations are graphical representations
of formalized inferences taking the form of trees.

Gentzen systems are characterized by a set of inference rules (also called “rule figures”),
which determine the primitive forms of reasoning available within the system. Each inference
rule consists of a finite, possibly empty, set of premises and a single conclusion. A rule
with no premises is an axiom. Intuitively, an inference rule expresses the idea that taken
together, the premises are sufficient to justify the conclusion. Inference rules are represented
graphically by writing the conclusion below the premises, separated by a rule line:

premise ⋯ premise
conclusion rule name

If the conclusion is sufficient to justify the premises as well, then the rule is called invertible.
Invertible rules are represented graphically with a double rule line. Variables occurring in
inference rules are schematic, that is, implicitly universally quantified at the meta-logical
level. We will refer to substitution instances of inference rules as primitive inferences,

7

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 8

although informally, these are often called “inference rules” as well.

Derivation trees are constructed by composing primitive inferences such that the con-
clusion of one is identical to a premise of another. Such a tree is a derivation of the the
conclusion residing at its root, called the “goal” or end-formula. The premises at the leaves
of a derivation are its assumptions, and the set of such is its frontier. A derivation with
empty frontier is a proof . The base case in the inductive construction of derivation trees
is that of an identity derivation, comprising no primitive inferences and thus having a
singleton frontier containing, identically, the end-formula.

2.2 Natural Deduction

In the derivation system of natural deduction, each logical constant (henceforth connec-
tive, for short) is characterized by a set of introduction and elimination inference rules.
Intuitively, introduction rules describe from what evidence a proposition with a given
principal connective may be inferred. Thus the conclusion of an introduction rule for a
connective is a proposition in which that connective is principal. Dually, elimination rules
describe the consequences that may be inferred from a proposition with a given principal
connective. Thus some premise of an elimination rule for a connective is a proposition in
which that connective is principal. This premise is called the major premise of the rule,
and any other (logical) premises are known as minor premises. By convention, the major
premise of an elimination rule is written first, that is, on the left.

The conclusion of each natural deduction rule is a logical proposition, as are most of the
premises. An exception arises in our treatment of this formal system because the logic that
we wish to study is typed. This results in inference rules for quantifiers having premises
that are typing judgements. A typing judgement is a judgement that a particular term in
the language of individuals inhabits a particular type. Typing judgements, along with their
means of inference, are parametric in the logic. In other words, we assume the existence of
a type theory independent of the logic by which such judgements may be inferred. Natural
deduction derivations are also known simply as “deductions”. The frontier of a deduction is
called its (global) context.

Essential to the meta-theory of natural deduction is the concept of hypothetical judge-
ment, whereby certain inference rules involve local assumptions, which may be used only
in the subderivation rooted at a particular premise of a rule instance without requiring
justification. A local assumption is discharged by the rule instance that introduced it,
and discharged assumptions do not enter the global context. Under the Curry-Howard
correspondence, local assumptions correspond to bound variables, and the sites at which
the former are discharged to those at which the latter are bound. Local assumptions are

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 9

conventionally indicated in rule figures using square brackets:

⋯

[]
𝒟

⋯

where 𝒟 is a meta-variable for the subderivation rooted at P . This notation is meant to
indicate that A is an assumption local to 𝒟 and discharged by the rule 𝑟. Conventionally,
rule lines are not drawn between a derivation meta-variable and its assumptions or conclu-
sion. Indeed, such a derivation could be an identity derivation and thus contain no primitive
inferences at all. We choose to insert these (meta) lines, however, to help keep clear the
tree structure of derivations that can otherwise become obscured in more complex cases.

Within an actual derivation we indicate the discharge of a local assumption by “closing
it off” with a rule line above. This line should generally be labeled in some way to relate it
to the inference responsible for the assumption, though the label is often omitted when the
correlation is obvious. The difference between this and the bracket meta-notation is that a
bracket indicates that a formula may occur among the (unspecified) assumptions, and if it
does, then it may be discharged. Whereas, in an actual derivation we must state explicitly
what the assumptions actually are and which among them we actually do discharge.

At any point in a derivation, the collection of locally available assumptions – those in
the global context plus any local assumptions in scope – is called the local context, and
typically referred to by some variant of “Γ”. It is customary to abuse notation and write
“Γ , A” for the context containing all elements of Γ as well as A. Rules that do not involve
hypothetical judgement preserve the context; that is, the collection of assumptions available
in each branch of a derivation subtree is the same as that at the root.

A set of natural deduction inference rules axiomatizing typed intuitionistic first-order
logic is presented in figure 2.1. In the quantifier rules, capture-avoiding substitution per-
formed at the meta-theoretic level is indicated by the notation “A[𝑥↦𝑡]”, which expresses the
result of safely substituting the expression 𝑡 for free occurrences of the variable 𝑥 within the
expression A.1 This may involve the renaming of bound variables, known as “α-conversion”,
which is considered to be a no-op. In other words, bound variable names are just a no-
tational convenience and could be done away with entirely, for example, with de Bruijn
indices.

The term “𝑡”, occurring in the rule ∀− is called a representative, and in the rule
∃+, a witness, of its type. The term “𝑒” occurring in the rules ∀+ and ∃− is called an

1 Note that the square brackets indicating substitution have nothing to do with those indicating local
assumptions. It is just an unfortunate coincidence of two entrenched notations, which should anyway be
unambiguous since a substitution may never be a local assumption, or vice-versa.

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 10

introduction rules elimination rules

no rule for

no rule for

∧ ∧ ∧ ∧ ∧ ∧

∨
∨

∨
∨ ∨

[]
𝒟

[]
𝒟

∨

[]
𝒟

⊃ ⊃ ⊃ ⊃

[∶]
𝒟

[↦]
∀ ∶ . ∀

∀ ∶ . ∶
[↦] ∀

∶ [↦]
∃ ∶ . ∃ ∃ ∶ .

[∶] , [[↦]]
𝒟

∃

may not occur outside of 𝒟 or in any open premise

Figure 2.1: Inference rules for intuitionistic first-order natural deduction

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 11

eigenvariable (also generic variable or generic parameter). The side-conditions of these
rules ensure that it represents a generic term of its type, in the sense that nothing apart
from its type can be inferred about it in the course of a derivation. We sometimes refer
to the eigenvariable of the rule ∃− as a generic witness and to that of ∀+ as a generic
representative. This raises the question of what happens if the type of the eigenvariable is
uninhabited. The answer is that local to the hypothetical subderivation 𝒟, it is not. Within
the hypothetical subderivation, by assumption, the type contains at least the eigenvariable;
though this may not be true globally. It is precisely the local assumption that some term of
the given type exists (and possibly satisfies some properties) that makes the subderivation
hypothetical.

Since we equate propositions that differ only in their bound variables, we may choose
to use the bound variable itself as the eigenvariable for the rules ∀+ and ∃−, after first
safely renaming it away from any other variables in the local scope. We will see shortly the
advantages of doing so, and will do this by default in subsequent chapters. To keep track
of the scope of free term variables, we add a partition to our contexts, splitting each into
a propositional context (or “logical context”), containing propositional assumptions, and
a typing context, typically denoted “Φ”, specifying the typed free variables in scope at
any particular point in a derivation. We say that propositions and logical derivations are
dependent on their typing contexts in the sense that they are only well-formed in typing
contexts that include all of the free variables occurring within them. We will have much
more to say about this dependence shortly. An empty context will either be written as
“∅”, or suppressed entirely.

The derivability or consequence relation is indicated with the infix symbol “⊢”. So
“Φ | Γ ⊢ A” expresses the judgement that there exists some derivation of conclusion A from
logical assumptions Γ in typing context Φ. If there is more than one derivation system under
consideration, a subscript is placed on the turnstile to disambiguate. We will refer to deriv-
ability in the system of natural deduction of figure 2.1 by “⊢ ”, representing intuitionistic
first-order derivability.

2.3 Harmony of the Connectives

The idea of connective harmony is presented in the philosophical investigations into logic
by Michael Dummett [Dum91]. It is closely related to the notion of term equality in the
type theory of Per Martin-Löf [Mar84]. The idea originates from an assertion by Gentzen
[Gen35] that the meaning of a connective is characterized by its introduction rules,

An introduction rule gives, so to say, a definition of the constant in question
[...while...] an elimination rule is only a consequence of the corresponding intro-
duction rule.

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 12

Prawitz [Pra65] interpreted this to mean that derivations ending in an introduction rule were
canonical verifications of their conclusions. Dummett proposed to make this principle hered-
itary by requiring canonical verifications to end in a series of introductions. Furthermore, he
recognized that this perspective has a dual: rather than connectives being characterized by
their introduction rules, they could alternatively be characterized by their elimination rules,
from which canonical consequences could be derived by a series of eliminations. Dummett
called these two perspectives verificationism and pragmatism.

The verificationist perspective upholds the primacy of the introduction rules of natural
deduction, and the pragmatist perspective, that of the elimination rules. However, the
two perspectives can be reconciled since both insist that there be a harmony between
the introduction and elimination rules of each connective. This harmony consists of two
principles.

The principle of local soundness ensures that collectively, the elimination rules of a
connective are not stronger than its introduction rules (slogan: “you may get out only what
you have put in”). This means that in a derivation, if there is a proposition, which Prawitz
called a “maximum formula”, that is both the conclusion of an introduction inference and the
major premise of an elimination inference (necessarily for the same connective) then there
exists a derivation of the conclusion of the elimination inference directly from the collection
of subderivations justifying the premises of the two inferences in question. Such a derivation
will not contain these two inferences, nor the maximum formula. A transformation of
derivations doing away with such a detour through a maximum formula is a local reduction.
Local reduction can also be thought of as a computation principle for a connective because
it transforms derivations, and by the Curry-Howard correspondence their realizer terms, into
(in a sense to be made precise) simpler ones. This transformation is known as (generalized)
β-reduction.2

The principle of local completeness ensures that collectively, the elimination rules of a
connective are not weaker than its introduction rules (slogan: “you may get out all that you
have put in”). Intuitively, this means that given any non-atomic proposition, we should be
able to extract its consequences using its elimination rules, and use those consequences as
evidence by which to reconstitute the proposition by reintroducing its principal connective.
However, the tree-structure of natural deduction derivations makes the concrete expression
of this intuition rather difficult to recognize in some cases. In chapter 5 we will see that
there is a perfectly symmetrical categorical semantics lurking behind this asymmetrical tree
syntax. A transformation of derivations of this sort is a local expansion. Local expansion
can also be thought of as a representation principle for a connective because under

2 We hedge with the word “generalized” here because in some contexts “ -reduction” is interpreted to
refer narrowly to a reduction rule for function (arrow) type, or in logic, implication. But we use it more
broadly to refer to the reduction that results from eliminating the detour just described.

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 13

Curry-Howard it guarantees that an arbitrary term of a given type has a canonical top-level
representation. This transformation is known as (generalized) η-expansion.3

The local reductions and expansions witnessing the local soundness and completeness of
the connectives of intuitionistic first-order logic, as presented in [Pfe09], are shown in figures
2.2 and 2.3, respectively. These are the typed versions of derivation conversions described
by Prawitz in [Pra71]. Local soundness and completeness alone are not sufficient to ensure
certain desirable global properties of natural deduction derivations. Chief among these is
the existence of unique normal forms for derivations.

Given a rewriting relation on terms, (− ⇝ −), a term is a normal form if it is not
related to any terms:

𝑡 normal ⟺ ∀𝑢 . ¬(𝑡 ⇝ 𝑢)

The uniqueness of normal forms, independent of their existence, is guaranteed by the prop-
erty of confluence, which states that for ⇝∗ the reflexive-transitive closure of ⇝,

∀𝑡 , 𝑢 , 𝑣 . (𝑡 ⇝∗ 𝑢 ∧ 𝑡 ⇝∗ 𝑣) ⊃ (∃𝑤 . 𝑢 ⇝∗ 𝑤 ∧ 𝑣 ⇝∗ 𝑤)

In particular, if 𝑢 and 𝑣 are both normal then they must be the same term. The normal-
ization property states that every term rewrites to some normal form:

∀𝑡 . ∃𝑢 . 𝑢 normal ∧ 𝑡 ⇝∗ 𝑢

If every sequence of rewrites terminates, then the rewriting system is called strongly nor-
malizing. In the presence of confluence, this implies that it doesn’t matter how you do the
rewriting, you will always reach the unique normal form.

Intuitively, we would like to take as the rewriting rules for natural deduction deriva-
tions the local reductions and local expansions. Unfortunately, such a naïve approach does
not quite work. We consider first the rewriting system generated by the local reductions.
In order for this system to have unique normalization we need to add the permutation
conversions (also called “commuting conversions”) for the connectives {⊥ , ∨ , ∃} depicted
in figure 2.4 as well. These are needed in order to transform derivations (and their proof
terms) in such a way as to unite a “trivially separated” β-reducible pair of rules so that the
β-reduction may be applied. For example, the disjunction permutation allows the conver-

3 Again, we use the word “generalized” to indicate that we are not referring only to the expansion at
arrow type.

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 14

no local reduction for

no local reduction for

𝒟 𝒟

∧ ∧
∧ ∧⟼

𝒟

ℰ

∨
∨

[]
𝒟

[]
𝒟

∨ , ∨⟼

ℰ

𝒟

[]
𝒟

⊃ ⊃ ℰ

⊃ ⊃⟼

ℰ

𝒟

[∶]
𝒟

[↦]
∀ ∶ . ∀ 𝒯

∶
[↦] ∀ ∀⟼

𝒯
∶

𝒟[↦]
[↦]

𝒯
∶

ℰ
[↦]

∃ ∶ . ∃

[∶] [[↦]]
𝒟

∃ , ∃⟼

𝒯
∶

ℰ
[↦]

𝒟[↦]

Figure 2.2: Local reductions for intuitionistic first-order natural deduction (∗ >)

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 15

ℰ
⟼

ℰ
⟼

ℰ

ℰ
∧ ∧⟼

ℰ
∧ ∧

ℰ
∧ ∧

∧ ∧

ℰ
∨ ∨⟼

ℰ
∨ ∨

∨
∨

∨

∨ ∨ ,

ℰ
⊃ ⊃⟼

ℰ
⊃ ⊃

⊃ ⊃

ℰ
∀ ∶ . ∀⟼

ℰ
∀ ∶ . ∶

[↦] ∀

∀ ∶ . ∀

ℰ
∃ ∶ . ∃⟼

ℰ
∃ ∶ .

∶ [↦]
∃ ∶ . ∃

∃ ∶ . ∃ ,

Figure 2.3: Local expansions for intuitionistic first-order natural deduction (∗ <)

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 16

ℰ
⇄⟼

∨

[]
𝒟

[]
𝒟

∨

ℰ
∨⇄⟼

∨

[]
𝒟

ℰ

[]
𝒟

ℰ

∨

∃ ∶ .

[∶] , [[↦]]
𝒟

∃

ℰ
∃⇄⟼

∃ ∶ .

[∶] , [[↦]]
𝒟

ℰ

∃

Figure 2.4: Permutation conversions for intuitionistic first-order natural deduction (∗ ⇄)

sion:

∨

[] , []
𝒟

⊃ ⊃

[] , []
𝒟

⊃ ⊃

⊃ ∨ ℰ

⊃ ∨⇄,⊃⟼
∨

[]
ℰ

𝒟
[]

ℰ

𝒟

∨

(2.1)
The proximate cause of the need for the permutation conversions is the nondeterministic
decision of when to conclude pursuing a hypothetical subderivation and “return to the real
world”.4 But as we will see in chapter 5, the deeper reason is naturality.

Prawitz proved the existence of unique normal forms for natural deduction derivations
under the relation generated by the local reductions and permutation conversions in [Pra65].
We will call these the β-normal forms. The proof is constructive in that it allows one to
actually compute β-normal forms. A simplified proof using the realizer terms under the
Curry-Howard correspondence is presented by Girard in [GLT89]. Prawitz [Pra71] and
Girard [Gir72] subsequently proved that the system is in fact strongly normalizing (indeed,
Girard’s result applies also to higher-order logics). This makes precise the sense in which

4 Yes, this implies that there is a hypothetical subderivation lurking inside the rule too, though it
is, as yet, hard to see.

CHAPTER 2. HARMONY IN GENTZEN’S PROOF THEORY 17

performing local reductions simplifies derivations: it brings them closer to their unique
normal forms.

Allowing unrestricted local expansion as well leads to non-termination because the ex-
pansions can be applied repeatedly. Reorienting the local expansions as contractions is also
problematic because it leads to a loss of confluence. However, we may safely compute the
β-normal form of a derivation and then locally expand the assumptions. This results in the
β-normal–η-long forms, henceforth normal forms, familiar from typed λ-calculus under
the Curry-Howard correspondence. See [Dou93], [JG95] and [Gha95b] for details on the
subtleties introduced by η-conversion.

Together, the local reductions, local expansions and permutation conversions generate
an equivalence relation on the set of natural deduction derivations where each equivalence
class contains a unique normal form. These equivalence classes, or equivalently, their normal
representatives, will be the objects of study in our categorical semantics. As we will see in
the sequel, each of these properties, local soundness, local completeness and the permutation
conversions is a direct consequence of the definability of the connectives by adjoint functors.
Indeed, the categorical perspective will show us that in fact all of the connectives can be
seen to have permutation conversions, and that the connectives may act on derivations as
well as on propositions.

Chapter 3

Categorical Constructions

In this chapter we summarize the main categorical constructions and properties that we will
use in the sequel. All of the results presented here are “standard” in the mathematician’s
sense of being widely known and documented. Therefore, proofs are included only selectively
in an attempt to help guide intuition or illustrate a particular style of reasoning. For a more
thorough treatment of the topics described here, as well as the basic categorical concepts on
which they rely, we recommend [Awo10], [BW98] or [Mac98]. We should mention that our
categorical notation may differ from that to which the reader is accustomed. If this should
be the case, please consult the brief appendix A explaining our notation.

3.1 Adjunctions

Adjunction is a surprisingly useful gadget from the field of category theory. It is a relation-
ship that may hold between a pair of anti-parallel functors that generalizes the concept of
Galois correspondence. There are several useful equivalent characterizations of the concept
of adjunction, we begin with the following:

Definition 3.1.1 (adjunction) Let F ∶ 𝔸 ⟶ 𝔹 and G ∶ 𝔹 ⟶ 𝔸 be a pair of anti-parallel
functors. F and G form an adjunction, written “F ⊣ G”, if any of the following circum-
stances, which are equivalent, obtain.

natural isomorphism of hom bifunctors
There exists a natural isomorphism of hom bifunctors,

θ ∶ ((𝔸° × 𝔹) ⊃ Set) (𝔸 (− → G(−)) → 𝔹(F(−) → −))

that is, for any objects A ∶ 𝔸 and B ∶ 𝔹, there is a bijection of hom sets:
𝔸(A → G(B))
𝔹 (F(A) → B) θ(A , B)

18

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 19

and for any arrows 𝑎 ∶ 𝔸 (A → A) and 𝑏 ∶ 𝔹 (B → B), the following diagram commutes:

..

..𝔸(→ ()) ..𝔹(() →)

..𝔸(→ ()) ..𝔹(() →)

.

(,)

.

≅

.

(,)

.

≅

.𝔸(→ ()) . 𝔹(() →) (3.1)

universal property of the counit
There exists a natural transformation ε ∶ G ⋅ F ⟶ id𝔹 such that for any arrow 𝑔 ∶
𝔹 (F(A) → B), there is a unique arrow 𝑔♭ ∶ 𝔸(A → G(B)) such that F(𝑔♭) ⋅ ε(B) = 𝑔:

..

..𝔸 ∶() .

..𝔹 ∶ ..() .. .

. . ..(∘)() .

.

♭

..

()

.

(♭)

(3.2)

universal property of the unit
There exists a natural transformation η ∶ id𝔸 ⟶ F ⋅ G such that for any arrow 𝑓 ∶
𝔸 (A → G(B)), there is a unique arrow 𝑓♯ ∶ 𝔹(F(A) → B) such that η(A) ⋅ G(𝑓♯) = 𝑓:

..

. ..(∘)() . .

..𝔸 ∶() .

..𝔹 ∶ ..() .. .

..

♯

.

()

.

(♯)

(3.3)

The bijection θ of the natural isomorphism of hom bifunctors characterization is the
bijection −♯ of the universal property of the unit characterization, and its inverse, θ , is
the bijection −♭ of the universal property of the counit characterization. In an adjunction
F ⊣ G, F is said to be left adjoint to G and G right adjoint to F. The natural transformations
η and ε are called the unit and counit of the adjunction, respectively. When the intended
adjunction is clear from context or irrelevant, we refer to the arrows of a pair (𝑓 , 𝑓♯) or
(𝑔 , 𝑔♭) as adjoint complements of one another. It is sometimes convenient to summarize
an adjunction with the tuple, (𝔸 , 𝔹 , F , G , η , ε).

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 20

The reader may have noticed the duality between the two universal property characteri-
zations of an adjunction. We will return to this point shortly. We now briefly mention the
intuition behind the musical notation. Many familiar instances of the concept of adjunction
arise in the form of algebraic structures, where the category 𝔸 is Set and 𝔹 is, to take one
example, Grp, the category of groups and their homomorphisms. In this case, the free group
functor is left adjoint to the underlying set functor and the natural bijection θ associates a
“plain arrow” in the form of an ordinary function to a “fancy arrow” in the form of a group
homomorphism. Thus mnemonically, −♯ is “fancification” while −♭ is “plainification”. Of
course not all adjunctions fit this pattern, but we have found the mnemonic to be helpful.

Because the characterizations of an adjunction given above are equivalent, it will be
convenient to summarize an adjunction diagrammatically as follows:

..

. ..(∘)() . .

..𝔸 ∶() .

..𝔹 ∶ ..() .. .

. . ..(∘)() .

.
♭

.
♯

.

()

.

()

.

(♯)

.

(♭)

.. (3.4)

By setting 𝑔 to ε(B) or 𝑓 to η(A), it is easy to work out their adjoint complements.

Lemma 3.1.2 (adjoint complements of (co)unit components) The adjoint complements of
the counit and unit of an adjunction are identity arrows on adjoint functor images; that is,

(ε(−))♭ = id () (η(−))♯ = id ()

In the sequel, it will be important for us to understand how arrows with adjoint com-
plements behave under composition.

Lemma 3.1.3 (composition with adjoint complements) For adjunction F ⊣ G, if arrow
𝑔 ∶∶ 𝔹 has adjoint complement 𝑔♭ ∶∶ 𝔸 then 𝑎 ⋅ 𝑔♭ = (F(𝑎) ⋅ 𝑔)♭; likewise, if arrow 𝑓 ∶∶ 𝔸 has
adjoint complement 𝑓♯ ∶∶ 𝔹 then 𝑓♯ ⋅ 𝑏 = (𝑓 ⋅ G(𝑏))♯, whenever the compositions are defined.
That is,

..
..𝔸 ∶()

..𝔹 ∶ ..() . ..() . ..
..

♭

.

()

. and ..
..𝔸 ∶() . ..()

..𝔹 ∶ ..()
..

()

.

♯

.

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 21

Proof. Actually, these are exactly the conditions necessary for naturality in the “natural
isomorphism of hom bifunctors” characterization of adjunction in definition 3.1.1. But we
give here a proof using the universal properties characterizations to illustrate the connec-
tion. In the first case, pasting the diagrams for the naturality of η at 𝑎 and the adjoint
factorization of 𝑔♭ along η(A) yields:

..

. ..(∘)() ..(∘)() . .

..𝔸 ∶() .

..

(∘)()

.() .

♭

.(). ()

By the functoriality of G,
(G ∘ F)(𝑎) ⋅ G(𝑔) = G(F(𝑎) ⋅ 𝑔)

but by the uniqueness of adjoint complements,

∃!(𝑎 ⋅ 𝑔♭)♯ ∶ 𝔹(F(A) → B) . η(A) ⋅ G((𝑎 ⋅ 𝑔♭)♯) = 𝑎 ⋅ 𝑔♭

so it must be that
(𝑎 ⋅ 𝑔♭)♯ = F(𝑎) ⋅ 𝑔

The other case is dual to this one.

By setting the arrows 𝑔 and 𝑓 in the preceding lemma to the respective identities, we
obtain the following useful characterization of the of the action of adjoint functors on arrows.

Corollary 3.1.4 (adjoint functor image of arrows) For adjunction F ⊣ G with unit η and
counit ε,

F(−) = (− ⋅ η(cod(−)))♯ and G(−) = (ε(dom(−)) ⋅ −)♭

A fundamental property of adjoint functors is their monogamy.

Lemma 3.1.5 (uniqueness of adjoints) Adjoint functors determine each other uniquely,
up to natural isomorphism.

Proof. Given the functors F , F ∶ 𝔸 ⟶ 𝔹 and G , G ∶ 𝔹 ⟶ 𝔸, and the adjunctions F ⊣ G and
F ⊣ G , if G ≅ G then for any A ∶ 𝔸 and B ∶ 𝔹,

𝔹(F(A) → B) ≅ 𝔸 (A → G(B)) ≅ 𝔸 (A → G (B)) ≅ 𝔹 (F (A) → B)

The isomorphisms are natural in B, so extend to the hom functors:

𝔹(F(A) → −) ≅ 𝔸 (A → G(−)) ≅ 𝔸 (A → G (−)) ≅ 𝔹 (F (A) → −)

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 22

The transitive isomorphism, together with the Yoneda principle, which states that being
full and faithful, the Yoneda embeddings reflect isomorphisms, implies that

∀A ∶ 𝔸 . F(A) ≅ F (A)

still natural in A, giving us the natural isomorphism F ≅ F . The case for right adjoints is
dual.

Another fundamental property of adjoint functors is their interaction with (co)limits.

Lemma 3.1.6 ((co)continuity of adjoint functors) Right adjoint functors preserve limits,
dually, left adjoint functors preserve colimits.

Indeed, this is the idea behind yet another equivalent formulation of the concept of
adjunction known as “Freyd’s adjoint functor theorem”, which is a partial converse to this
lemma.

In some ways we might prefer a structure somewhat less strict than that of an adjunc-
tion. In particular, we might prefer that triangles (3.2) and (3.3) commute only up to a
canonical 2-morphism. We will see that this would allow us to distinguish between βη-
convertible derivations, but would also require a lax 2-categorical version of adjunction and
add significant complexity (see for example, [See79]). Therefore we proceed with ordinary
1-dimensional categories and adjunctions, but will take the liberty of referring to the equal-
ities short-cutting the triangles of (3.2) and (3.3) as “β(𝑔)” and “β (𝑓)”, respectively, for
reasons that will soon become clear.

There is one good reason to prefer the 1-dimensional approach we are taking, at least
when it comes to proof search. Since intuitionistic first-order natural deduction derivations
have unique normal forms (i.e. the β-normal–η-long forms1), by identifying equivalence
classes of derivations with their normal forms we may prune the search space of potential
derivations without sacrificing completeness. To take a trivial example, there are many
natural deduction proofs of ⊤, indeed, any valid proof whatsoever composed with the ⊤+
rule is one such. But by considering them all equivalent to the normal one, comprising just
a single instance of the ⊤+ rule, we save ourselves from having to considering the infinity
of others.

Despite the decision not to venture into the world of 2-categorical rewriting theory
(cf. [Gha95a]), it will still prove useful in the sequel to understand adjunctions from a 2-
categorical perspective. Fortunately, the 2-category in this case is Cat, so nothing too exotic

1 We warn the unsuspecting reader not to confuse the “ ” naming a conversion rule of the -calculus
with the “ ” naming the unit of an adjunction. Both uses are too entrenched for us to hope to change them,
but anyway context should make abundantly clear which is intended.

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 23

will be involved. We begin by giving yet another equivalent characterization of adjunction,
this one “external” or “global”, describing behavior, in contrast to the “internal” or “local”
characterizations of definition 3.1.1, that describe structure.

Proposition 3.1.7 (external characterization of adjunction) Given a pair of anti-parallel
functors, F ∶ 𝔸 ⟶ 𝔹 and G ∶ 𝔹 ⟶ 𝔸, and pair of natural transformations η ∶ id𝔸 ⟶ F ⋅ G
and ε ∶ G ⋅ F ⟶ id𝔹, there is an adjunction F ⊣ G with unit η and counit ε just in case the
following two adjunction laws are satisfied:

(η ⋅ ⋅F) ⋅ (F ⋅ ⋅ε) = id (G ⋅ ⋅η) ⋅ (ε ⋅ ⋅G) = id (3.5)

These equations surely seem rather opaque upon a first encounter. Fortunately, they
have intuitive graphical representations. We can draw η and ε each as a triangular 2-cell.
Any two 2-cells may be pasted together along a common boundary to form a composite
2-cell so long as their orientations are compatible; that is, so long as the common edge is
part of the 1-dimensional codomain of the first 2-cell and part of the 1-dimensional domain
of the second 2-cell. As pasting diagrams the adjunction laws become:

..
..𝔸 . ..𝔸 .

. ..𝔹 . ..𝔹

......
⇓

.
⇓

= ..
..𝔸 .

. ..𝔹

...⇓ and ..
. ..𝔸 . ..𝔸

..𝔹 . ..𝔹 .
......

⇓
.

⇓
= ..

. ..𝔸

..𝔹 .
...⇓

whence they get the name triangle equations. Another way to understand the adjunction
laws is by using the dual graphs of pasting diagrams, known as string diagrams. In the
graphical language of string diagrams it is customary to not annotate the 1- and 2-cells with
their orientations, but rather to assign them prevailing orientations throughout a diagram.
We will adopt the convention of reading 1-cells left-to-right and 2-cells top-to-bottom. It is
also customary to suppress the drawing of identity cells. As string diagrams, the adjunction
laws become:

.......

𝔸

.

𝔹

= ...𝔸 . 𝔹 and

𝔹

.

𝔸

= ...𝔹 . 𝔸

whence they get the alternative name zig-zag equations or “yankings”, since one can very
intuitively imagine grabbing the two ends of a zig-zag and yanking it straight.

One advantage of both of these graphical formulations is that they permit us to interpret
the adjunction laws as saying essentially that the unit and counit of an adjunction are

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 24

mutually inverse. Another is to shed light on the deep symmetry inherent in the concept
of adjunction. For example, by the zig-zag equations we can see that if η and ε are the
unit and counit of an adjunction F ⊣ G, then reversing their orientations to η° and ε°
by reflecting the string diagrams vertically yields another adjunction with the roles of the
natural transformations, as well as those of the functors in the adjunction, swapped. Since
reversing a natural transformation reverses the orientation of its components, it is not hard
to see that this dual adjunction must be G° ⊣ F° on the opposites of the original categories.
Reversing the orientations of 2-cells corresponds to the categorical duality called “co-”. So
we see that a co-adjunction is again an adjunction. This explains the duality between the
universal properties of the unit and counit: the counit of an adjunction is also the unit of
the corresponding co-adjunction, and vice-versa.

Lemma 3.1.8 (composition of adjunctions) Given a pair of “adjacent” adjunctions F ⊣ G
and F ⊣ G as shown:

....𝔸 ..𝔹 ..ℂ......

there is a “composite” adjunction F ⋅ F ⊣ G ⋅ G

Proof. If the units and counits of the adjacent adjunctions are η ,ε and η ,ε , respectively,
then the the composite adjunction has unit η ⋅ (F ⋅ ⋅η ⋅ ⋅G) and counit (G ⋅ ⋅ε ⋅ ⋅F) ⋅ ε .

One way to see that the adjunction laws are then satisfied is by using a pasting diagram,

..

..𝔸𝔸 . .

. ..𝔹 . ..𝔹 . ..𝔹 .

. . ..ℂℂ

...........
⇓

.
⇓

.

⇓

.
⇓

where each horizontal strip is equal to the identity natural transformation by the triangle
equation for the respective adjunction, and so the whole diagram is the identity natural
transformation on F ⋅ F .

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 25

Another way is to use a string diagram,

............

ℂ

.

𝔸

.

𝔹

and to yank both zig-zags simultaneously, leaving the identity natural transformation on
G ⋅ G .

In fact, by arbitrarily (but consistently) assigning to adjunctions the orientation of either
their left or right adjoint functor, we can define a category of adjunctions, where an
identity adjunction has identity functors as both its left and right adjoint.

Lemma 3.1.9 Given adjunctions F ⊣ G and F ⊣ G and functors A and B as shown
(without assuming that anything commutes):

..

𝔸

.

𝔹

...⊢ .

𝔸

.

𝔹

... ⊢..

there is a bijection between sets of natural transformations:
𝔸 ⊃ 𝔹 (A ⋅ F → F ⋅ B)
𝔹 ⊃ 𝔸 (G ⋅ A → B ⋅ G) ζ

Proof. Such a bijection is given by pasting, equivalently concatenating, with the respective
unit and counit of the two adjunctions:

..
..𝔸 . ..𝔸 .

. ..𝔹 . ..𝔹

.....⇓ ⟼ ..
. ..𝔸 . ..𝔸 . ..𝔸

..𝔹 . ..𝔹 . ..𝔹 .
.........⇓ .

⇓
. ⇓

and

..
. ..𝔸 . ..𝔸

..𝔹 . ..𝔹 .
.....⇓ ⟼ ..

..𝔸 . ..𝔸 . ..𝔸 .

. ..𝔹 . ..𝔹 . ..𝔹

.........⇓ .⇓ .
⇓

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 26

or equivalently,

.......𝔸 . 𝔹.

𝔸

.

𝔹

⟼

𝔹

.

𝔸

.

𝔸

.

𝔹

and

.......𝔹 . 𝔸.

𝔸

.

𝔹

⟼

𝔸

.

𝔹

.

𝔸

.

𝔹

The triangle equations, respectively, zig-zag equations, ensure that going back and forth in
either order amounts to the identity.

Definition 3.1.10 (mate) Natural transformations related by the bijection ζ are each
called the other’s mate. In case we need to be more specific, we will call φ the left mate
and ψ the right mate, after the adjoint functors involved.

Definition 3.1.11 (Beck-Chevalley condition) The Beck-Chevalley condition is the re-
quirement that the mate of a natural isomorphism is itself a natural isomorphism.

This condition could be separated into two distinct requirements, one for each direction
across the bijection, but we will want both, so for us the condition states that a natural
transformation with a (left or right) mate is an isomorphism just in case its mate is too.

3.2 Comonads

Definition 3.2.1 (comonad) Given a category 𝔹, a comonad on 𝔹 is a tuple (𝔹 , S , ε , δ)
where,

S ∶ 𝔹 ⟶ 𝔹 , ε ∶ S ⟶ id𝔹 , δ ∶ S ⟶ S

such that the following equations are satisfied:

associative law: δ ⋅ (δ ⋅ ⋅S) = δ ⋅ (S ⋅ ⋅δ)

counit laws: δ ⋅ (ε ⋅ ⋅S) = id = δ ⋅ (S ⋅ ⋅ε)

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 27

The natural transformations ε and δ called the counit and comultiplication of the
comonad, respectively. When there is no danger of confusion, it is customary to refer to
comonads by their endofunctors, as in “the comonad S”. We can represent these equations
as commuting diagrams in the monoidal category 𝔹⊃ 𝔹 as:

..

.. ..

.. ..

... ⋅ ⋅.

⋅ ⋅

and ..

.. ..

.. ..

... ⋅ ⋅.

⋅ ⋅

or perhaps more helpfully, as equations in string diagrams as,

........ =

and

...... = .. =

Comonads are closely related to adjunctions, as are their probably more well-known
duals, monads, which have lately become a common abstraction in the field of functional
programming. Readers already comfortable with monads will find the diagrams in this
section familiar when turned upside-down (or rather, reflected vertically), as the duality
“co-” corresponds to reversing the orientation of 2-cells. We begin by noting that to every
adjunction there is associated a canonical comonad in the following sense:

Lemma 3.2.2 (comonads from adjunctions) If 𝒜 = (𝔸 , 𝔹 , F , G , η , ε) is an adjunction,
then 𝑐𝑜𝑚(𝒜) ≔ (𝔹 , G ⋅ F , ε , G ⋅ ⋅η ⋅ ⋅F) is a comonad.

Proof. Here is a picture-proof in string diagrams. Using the notation from the definition of
comonad, the lemma asserts that the associative law and counit laws hold when S is G ⋅ F
and δ is G ⋅ ⋅η ⋅ ⋅F. So if we were to “zoom in” on the counit and comultiplication, we would

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 28

see, respectively,

.....

𝔹

.

𝔸

and

𝔸

.

𝔹

.

𝔹

.

𝔹

This is why we have suggestively drawn the functor S in the string diagrams for comonads
as a ribbon: we imagine that there is a little category 𝔸 curled up inside. If we were to
“fatten up” the inside of the ribbon in the left string diagram for associativity, it would then
look like this:

......

𝔸

.

𝔹

.

𝔹

.

𝔹

.

𝔹

The associative law holds because, being natural transformations and thus satisfying the
interchange law, the two instances of η are free to slide up or down past one another within
the G – F tube. The counit laws hold because any S-branch ending in ε looks like this (or
its mirror-image with the 1-cells swapped):

.......

𝔹

.

𝔸

This is a zig-zag and so may be yanked straight.

The converse situation is more complex. Beginning from a comonad S, an adjunction 𝒜
such that 𝑐𝑜𝑚(𝒜) = S is called an adjoint resolution (or just “resolution”) of S. In general,
there are many different ways to resolve a comonad into an adjunction, and in fact the
collection of adjoint resolutions itself forms a category. Such a category of adjoint resolutions
always has both initial and terminal objects, which form extremal canonical resolutions of
the comonad. A terminal resolution, known as the Eilenberg–Moore resolution, involves
the category of comonadic coalgebras of the functor S. Although a fascinating topic in its
own right, we will not need to make use of it in the sequel, so we refer the interested reader
to [Mac98] for further details. Embedded within the category of comonadic coalgebras as a

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 29

full subcategory lies the category of co-free comonadic coalgebras, which is equivalent to a
category, called the Kleisli category, given by a simple syntactic construction. This category
provides an initial resolution of the comonad, called the Kleisli resolution, which we now
describe.

Lemma 3.2.3 (Kleisli category) Given a comonad (𝔹 , S , ε , δ) the following data define a
category, called the Kleisli category of S and written “𝔹 ”.

objects: those of 𝔹,
A ∶ 𝔹 ≔ A ∶ 𝔹

arrows: 𝔹-arrows from S-images,

𝔹 (A → B) ≔ 𝔹(S(A) → B)

composition: for arrows 𝑓 ∶ 𝔹 (A → B) and 𝑔 ∶ 𝔹 (B → C),

(𝑓 ⋅ 𝑔) ∶ 𝔹 (A → C) ≔ (δ(A) ⋅ S(𝑓) ⋅ 𝑔) ∶ 𝔹 (S(A) → C)

as shown:

..

..𝔹 ∶ ..()

. ..() ..() .. .

.

...
()

.

()

identities: counit components,

id ∶ 𝔹 (B → B) ≔ ε(B) ∶ 𝔹 (S(B) → B)

Lemma 3.2.4 (Kleisli resolution) Given a comonad (𝔹,S,ε,δ), the tuple (𝔹 ,𝔹,F ,G ,η ,ε),
where 𝔹 is the Kleisli category of S and F , G , and η are as defined below, is an adjoint
resolution of S, known as the Kleisli resolution.

F
𝔹 ⟶ 𝔹
B ⟼ S(B)

𝑓 ∶ A ⟶ B ⟼ δ(A) ⋅ S(𝑓)

G
𝔹 ⟶ 𝔹
B ⟼ B

𝑓 ∶ A ⟶ B ⟼ ε(A) ⋅ 𝑓 ∶∶ 𝔹

η
id𝔹 ⟶ F ⋅ G
B ⟼ id () ∶∶ 𝔹

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 30

Proof. We demonstrate the universal property of the counit. After unpacking the definitions
involved, it must be shown that for any 𝑓 ∶ 𝔹 (S(A) → B) there is a unique 𝑔 ∶ 𝔹 (S(A) → B)
making the following diagram commute:

..

..𝔹 ∶ ..()

. ..() ..() ..

.

..
()

.

()

.

()

But then we would have:
δ(A) ⋅ S(𝑔) ⋅ ε(B)

= [naturality of ε]
δ(A) ⋅ ε(S(A)) ⋅ 𝑔

= [counit law]
id ⋅ 𝑔

= 𝑔

So 𝑔 must be just 𝑓 itself.

The arrow F (𝑓) is also known as the Kleisli extension of 𝑓 and written “𝑓”. The idea
is that when composing a sequence of arrows in 𝔹 , each save the last has its F -image
composed in 𝔹. Thus, an equivalent way to think about composing a sequence of arrows in
𝔹 is to compose all of their F -images in 𝔹 and then postcompose the component of ε in 𝔹,
which is just postcomposing an identity arrow in 𝔹 . Haskell programmers may recognize
this as the dual of a monad construction called “bind” and written as “(>>= 𝑓)”.

3.3 Bicartesian Closed Categories

Definition 3.3.1 (bicartesian closed category) A bicartesian closed category is one
having the following universal constructions:

• binary cartesian product (− × −)

• terminal object (1)

• binary coproduct (−+−)

• initial object (0)

• exponential (−⊃−)

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 31

Together, a binary cartesian product and terminal object generate finite products, and
dually, a binary coproduct and initial object generate finite coproducts. A category with
just finite products and exponentials is a cartesian closed category, while one with only
finite products is a cartesian category.

The functor determining each of these universal constructions has either a left or right
adjoint, as follows. The binary cartesian product and coproduct bifunctors are right and
left adjoints, respectively, to a diagonal functor, ∆, that simply splits its input into two
identical copies: + ⊣ ∆ ⊣ ×.

+
ℂ × ℂ ⟶ ℂ
(A , B) ⟼ A + B
(𝑓 , 𝑔) ⟼ 𝑓 + 𝑔

∆
ℂ ⟶ ℂ × ℂ
A ⟼ (A , A)
𝑓 ⟼ (𝑓 , 𝑓)

×
ℂ × ℂ ⟶ ℂ
(A , B) ⟼ A × B
(𝑓 , 𝑔) ⟼ 𝑓 × 𝑔

Similarly, the constant functors that pick out terminal and initial objects of a category
are right and left adjoints, respectively, to the necessarily unique functor, !, to a terminal
category: 0 ⊣ ! ⊣ 1.

0
𝟙 ⟶ ℂ
∗ ⟼ 0

id∗ ⟼ id

!
ℂ ⟶ 𝟙
A ⟼ ∗
𝑓 ⟼ id∗

1
𝟙 ⟶ ℂ
∗ ⟼ 1

id∗ ⟼ id

Finally, the universal property of exponentials is determined by the well-known curry ad-
junction: for each B ∶ ℂ there is an adjunction, − × B ⊣ B ⊃ −.

− × B
ℂ ⟶ ℂ
A ⟼ A× B
𝑓 ⟼ 𝑓 × id

B ⊃ −
ℂ ⟶ ℂ
C ⟼ B⊃ C
𝑔 ⟼ id ⊃ 𝑔

We will have occasion to examine each of these adjunctions in detail in the sequel.

One fact about bicartesian closed categories that we will make use of is that they neces-
sarily satisfy a distributive property of products over coproducts, commonly known as the
distributive law:

Lemma 3.3.2 (distributive law) In any bicartesian closed category ℂ,

A × (B + C) ≅ (A × B) + (A × C)

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 32

Proof. Note that in any category with products and coproducts there is a canonical arrow
in the reverse direction:

..

..× ..(×) (×) ..×

. ..× () .

...
×

.
×

.[× , ×]

so the content of the lemma is that the presence of exponentials makes this arrow invertible.
For arbitrary X, we have:

A × (B + C) ⟶ X
≅ [symmetry of products]

(B + C) × A ⟶ X
≅ [currying]

B + C ⟶ A⊃ X
≅ [uncotupling]

(B ⟶ A ⊃ X) × (C ⟶ A⊃ X)
≅ [uncurrying]

(B × A ⟶ X) × (C × A ⟶ X)
≅ [cotupling]

(B × A) + (C × A) ⟶ X
≅ [symmetry of products]

(A × B) + (A × C) ⟶ X

So there is an isomorphism of hom functors in ℂ ⊃ Set,

A × (B + C) ⟶ − ≅ (A × B) + (A × C) ⟶ −

Applying the Yoneda principle reflects this isomorphism back into the category ℂ.

The category of small bicartesian closed categories and structure-preserving functors
between them is abbreviated “BCC”. Every bicartesian closed category is already a cartesian
closed category, and every bicartesian closed functor already a cartesian closed functor. One
fact about cartesian closed functors that we will make use of is that when they have left
adjoints, those left adjoints necessarily satisfy a distributive property of products over them,
known as Frobenius reciprocity:

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 33

Lemma 3.3.3 (Frobenius reciprocity) For cartesian closed categories 𝔸 and 𝔹, exponential
preserving functor G ∶ 𝔹 ⟶ 𝔸 with left adjoint F, and objects A ∶ 𝔸 and B ∶ 𝔹,

B × F(A) ≅ F(G(B) × A)

Proof. Note that the by virtue of the adjunction F ⊣ G, the functor G must preserve products
(lemma 3.1.6) and there is a canonical arrow in the reverse direction:

..

..𝔹 ∶ . ..(() ×) . .

. ..(∘)() .

.. . ..× () . ..()

.

()

. ().

()

...
⟨ () ⋅ () , ()⟩

We could prove this arrow invertible by the Yoneda principle, as we did in the case of the
distributive law, but instead we demonstrate a different technique.

The assumption that G preserves exponentials means that for any B , X ∶ 𝔹,

G(B ⊃ X) ≅ G(B) ⊃ G(X)

So for any B ∶ 𝔹, there is a natural isomorphism between functors,

(B ⊃ −) ⋅ G ≅ G ⋅ (G(B) ⊃ −)

Each of these functors has a left adjoint:

− × B ⊣ B ⊃ − , F ⊣ G , − × G(B) ⊣ G(B) ⊃ −

By composition of adjunctions (lemma 3.1.8) we have:

F ⋅ (− × B) ⊣ (B ⊃ −) ⋅ G and (− × G(B)) ⋅ F ⊣ G ⋅ (G(B) ⊃ −)

So by the uniqueness of adjoint functors up to natural isomorphism (lemma 3.1.5) we have:

F ⋅ (− × B) ≅ (− × G(B)) ⋅ F

and so for any A ∶ 𝔸,
F(A) × B ≅ F(A × G(B))

which is what we wanted to show, up to the symmetry of products.

The reason that we have introduced bicartesian closed categories is that they provide
suitable structure to interpret the propositional fragment of intuitionistic first-order logic.
However, to interpret the rest of the first-order structure we will need to be a bit more
creative.

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 34

.....

Set

. ●. ●. ●.

●

.

●

.

●

.

●

.

●

......

Figure 3.1: Two perspectives on dependence for indexed sets

3.4 Indexed Categories

A fundamental concept that recurs throughout mathematics is that of the dependence of
one thing on another. A familiar instance is the idea of an indexed family of sets, known
colloquially as an indexed set. It is well-known that any function 𝑓 ∶ A ⟶ X determines
a subset of its codomain in the form of its image. Dually, a function can be thought of as
effecting a partition (or quotient) of its domain, where two elements are equivalent just in
case they are mapped to the same value by the function. Each equivalence class, A , is a
subset of A indexed by 𝑓 from X:

A ≔ {𝑎 ∈ A | 𝑓(𝑎) = 𝑥}

Given such a function 𝑓, we may always construct a function,

F
X ⟶ ℘(A) ⊆ Set

𝑥 ⟼ A

The image of F is the indexed set {A } ∈ . We will write “∫F” for the disjoint union of the
image of F. Because 𝑓 partitions its domain, ∫F = A. On the other hand, if we begin with a
function F ∶ X ⟶ Set, we can “disjointify” the sets in its image by defining F (𝑥) ≔ (𝑥,F(𝑥)),
so that ∫F = ⋃ ∈ F (𝑥). Then we may define a projection function,

𝑓
∫ F ⟶ X

(𝑥 , 𝑎) ⟼ 𝑥

The situation is summarized in figure 3.1. It should be clear that both perspectives
describe the same relation of dependence on X.

A categorical generalization of the domain partitioning perspective of dependence is the
concept of fibration, whereas generalizing the indexed set perspective results in the concept

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 35

of indexed category. In the sequel, we will adopt the indexed category perspective. As in
the case for sets, the two perspectives are ultimately equivalent under suitable conditions
(the magic word to utter here is “splitting”). As usually happens when trying to generalize
a concept, there are several possible ways to proceed. Here is one that fits well to our
purposes:

Definition 3.4.1 (indexed category) Let 𝕏 be a category and 𝒞 be a 2-category of
categories. A (contravariant, strict) 𝕏-indexed 𝒞-category is a contravariant functor,
P ∶ 𝕏° ⟶ 𝒞.

When we wish to think of P as a functor, we will refer to it as the indexing functor
of P (as indexed category). We call 𝕏 the base category (or just “base”) of P. For an
object X ∶ 𝕏, we call the category P(X) the fiber over X. For an arrow 𝑠 ∶ 𝕏 (X → Y), we
call P(𝑠) ∶ P(Y) ⟶ P(X) the reindexing functor induced by 𝑠. When the indexed category
under consideration is clear from context or irrelevant, it is customary to write “𝑠∗” for P(𝑠).

In the sequel, 𝒞 will always be a subcategory of Cat (in fact, of BCC), so an indexing
functor will map objects of the base to small categories of a given kind and arrows to
contravariant structure-preserving functors between them. We will typically draw a diagram
in an indexed category as diagrams in the fibers each positioned vertically above their
respective indexing object in a diagram in the base category.

The categorical analogue of going from the indexed set perspective to the domain parti-
tioning perspective of dependence involves building the category of elements of an indexed
category by a process known as the “Grothendieck construction”.2 The category of elements
generalizes the construction of ∫F for sets, above.

Lemma 3.4.2 (category of elements) Let P ∶ 𝕏° ⟶ 𝒞 be an indexed category. The
following data define a category, called the category of elements of P, and written “∫P”.

objects: for objects X ∶ 𝕏 and A ∶ P(X),

(X , A) ∶ ∫ P

arrows: for arrow 𝑠 ∶ 𝕏 (X → Y), objects A ∶ P(X) , B ∶ P(Y) and arrow 𝑓 ∶ P(X) (A → 𝑠∗(B)),

(𝑠 , 𝑓) ∶ ∫ P ((X , A) → (Y , B))

composition: for arrows (𝑠 , 𝑓) ∶ ∫ P ((X , A) → (Y , B)) and (𝑡 , 𝑔) ∶ ∫ P ((Y , B) → (Z , C)),

(𝑠 , 𝑓) ⋅ (𝑡 , 𝑔) ≔ (𝑠 ⋅ 𝑡 , 𝑓 ⋅ 𝑠∗(𝑔))
2 Some authors restrict the term “category of elements” to the presheaf case (∶ 𝕏° ⟶ Set), but since the

term “Grothendieck construction” is almost completely uninformative, and in fact Grothendieck performed
many constructions, we prefer the term with at least a bit of descriptive content.

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 36

..

..∫ ∶ ..(,) ..(,) ..(,)

.

. ..∗() .. .

. ..(⋅)∗() ..∗() ..

..𝕏 ∶

.....
∗()

.

(,)

.

(,)

.

(⋅ , ⋅ ∗())

Figure 3.2: Composition in the category of elements of an indexed category

as shown in figure 3.2

identities: for objects X ∶ 𝕏 and A ∶ P(X),

id(,) ≔ (id , id)

Constructing the category of elements allows us to gather an indexed category back into
an ordinary category in a way that loses no information, thus we may recover an indexed
category (up to isomorphism) from its category of elements. The objects and arrows of
the base are given by first components of ∫P objects and arrows. Objects within a fiber
are given by second components of objects of ∫P. Arrows within a fiber are given by
second components of arrows of ∫P whose first components are identity arrows (so-called
“vertical morphisms”). The action of reindexing functors on objects is given by the second
components of the domains of ∫P-arrows whose second components are identity arrows;
that is, if (𝑠 , id) ∶∶ ∫ P has codomain (Y , B), then it is necessarily of the form,

(𝑠 , id ∗()) ∶ (X , 𝑠∗(B)) ⟶ (Y , B)

Finally, given 𝑏 ∶ P(Y) (B → B) and 𝑠 ∶ 𝕏 (X → Y), we may recover 𝑠∗(𝑏) as the second
component of the unique arrow making the following diagram in ∫P commute:

..
..(, ∗()) ..(,)

..(, ∗()) ..(,)

.

(, ∗())

.

(, ∗())

. (,).

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 37

This arrow must be (id , 𝑠∗(𝑏)) by the functoriality of 𝑠∗. The isomorphism between an
indexed category and the indexed category recovered from its category of elements is a
component of the (categorical) equivalence between the 2-category of indexed categories
and that of split fibrations, which forms the basis of the (logical) equivalence of the two
perspectives on dependence mentioned above.

Categories of elements can be used to apply constructions on categories to indexed
categories. They may also be used to represent iterated dependence relationships. For
example, they have been proposed in [FFL03] as interpretations for abstract notions of
state in the course of proof search.

We now address the two adjectives that were snuck into the definition of indexed category
above. The choice of contravariance may seem odd at first, but it is the natural choice
for representing operations that act on inputs as opposed to on outputs. In our case, the
dependence that we want to represent is that of logical propositions and derivations on their
free term variables and the operation mediating between these is the substitution of a term
for a free variable in another term.

The issue of strictness is more complex. Many naturally-occurring constructions that
would otherwise be indexed categories fail to be because they are not strict. For exam-
ple, a category ℂ with pullbacks has a natural indexed structure over itself given by the
slice construction (or “codomain fibration”): for A ∶ ℂ, the category ℂ/A has ℂ-arrows
with codomain A for objects and commuting triangles for arrows. Since the pullback of
a commuting triangle is again a commuting triangle, pullback along an arrow provides a
contravariant reindexing operation. But it is not strict: pullback preserves composition and
identity arrows only up to isomorphism. In order to accommodate this, we need the notion
of a pseudofunctor, where composition and identity are not “on the nose”, but rather “up
to isomorphism”. Indeed, a construction equivalent to that of pseudofunctors is adopted by
default in the fibrational perspective mentioned above.

In general, the fibrational approach has two key advantages to the indexed approach.
First, it avoids making potentially arbitrary choices since all definitions are purely in terms
of universal properties. This is particularly pleasing to categorists for being “non-evil”, that
is, for respecting the principle of equivalence [nla]. Second, it extends naturally to systems
involving more complex relations of dependence (which we do not consider here), either
through incorporation of dependent type theories, or through allowing types to depend on
propositions (e.g. {𝑛 ∶ ℕ | prime(𝑛)}), in which case there is no longer any reason to consider
propositions as separate from types. The indexed approach turns out to be less flexible in
this setting.

On the other side of the ledger, the indexed-categorical approach is generally easier to
understand and work with. Categories and functors have by now become familiar tools

CHAPTER 3. CATEGORICAL CONSTRUCTIONS 38

in computer science, whereas cartesian morphisms and cleavages still remain rather less-so.
Many of the results needed to ensure the preservation of the desired structure follow directly
from structure-preserving functoriality in the indexed-categorical setting, but require non-
trivial arguments in the fibrational setting. But convenience is not the only advantage of
the indexed approach. The advantage that the fibrational approach has of not specifying
canonical structures becomes a disadvantage for the interpretation of syntax, where we find
that we need more, not less, strictness. For example, if A is a proposition and 𝑡 a term, we
will want the interpretation of A[𝑥↦𝑡] to actually be the effect of the interpretation of the
substitution on the interpretation of the proposition, and not just something isomorphic
to it. It is precisely the strict functoriality of the indexed approach which permits this
soundness for syntax. We will not pursue the fibrational approach further here and refer
the interested reader to [Jac99] for details.

Although we also will not pursue here categorical notions of semantics, in the sense of
model theory, we mention that the concept of indexed category supports a notion of functor,
which may be used for the interpretation of such semantics:

Definition 3.4.3 (indexed functor) For indexed categories P ∶ 𝔸° ⟶ 𝒞 and Q ∶ 𝔹° ⟶ 𝒞 an
indexed functor from P to Q is a base change functor F ∶ 𝔸 ⟶ 𝔹 together with a natural
transformation τ ∶ P ⟶ F° ⋅ Q.

A notable special case is when F is an identity functor. Such an indexed functor over a
fixed base is used in [FFL03] to give a categorical presheaf semantics for a logic programming
language with implication in goals. Another special case occurs when τ is an identity natural
transformation. Such an indexed functor, where the underlying base change functor has a
left adjoint, is used in [Kri05] to define a Kan extension, which is then used to extend the
categorical semantics of [FFL03] to accommodate universally quantified goals.

Chapter 4

Categorical Intuitionistic First-Order
Logic

4.1 The Categorical Interpretation of Logic

The basic idea of categorical logic can be summarized like this. Beginning from a logical
system that we are interested in, we endeavor to interpret its propositional formulas as
objects in categories and its valid inferences as arrows between these objects. In order to
identify a suitable sort of category in which to do this, we look for universal constructions
from category theory that correspond to features of the logical system. These universal
constructions generate collections of arrows, which we use to interpret the inference schemes
of the logic. In addition, they generally impose certain relations, most notably equations on
the arrows of the category. A candidate interpretation is sound if every valid inference in
the logic is interpreted as a well-defined arrow in the category from the interpretation of its
premises to that of its conclusion. Soundness is an essential feature of an interpretation, and
when we speak of interpretations, we mean sound ones, although of course, the soundness
is something that must be proved.

Once we have found a suitable sort of category in which to interpret the logical system, we
may take any theory (i.e. collection of propositional formulas) from the logic and interpret
its language in any category of the given sort. To do so, we must assign objects of the
category to propositions and arrows to valid inferences in a consistent way. We may do this
by providing a function that takes each atomic proposition in the language of the theory
to an object of the category. This is because the universal constructions of the category
that interpret the features of the logical system will then inductively provide interpretations
for the rest of the structure. If M is an interpretation of language ℒ in category ℂ, then
we indicate the M interpretation in ℂ of an element of ℒ, such as a term or proposition,
by “⟦−⟧ ”. And if J is some judgement regarding elements of ℒ, such as an inference or

39

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 40

logic categories
logical system category of categories

theory free-interpretation category
model structure-preserving functor

proposition object
inference arrow

connective universal construction

Figure 4.1: the categorical interpretation of logic

equation, then we indicate that M satisfies J by “M ⊨ J”.

In particular, we can define an interpretation in the category of the given sort that is
freely generated by the atomic propositions of the language. Such a category will contain
only objects corresponding to these propositions and such other objects, arrows and relations
among them as are required to exist by the universal constructions in the sort of category we
have chosen. We call such an interpretation a free interpretation. A free interpretation
will generally have the universal property that for any interpretation of the language in
any category of the given sort there will be a unique structure-preserving functor from the
free-interpretation category to the other category such that when the free interpretation
is composed with this functor the result will be just the other interpretation. We usually
omit the interpretations brackets, ⟦−⟧, when discussing free interpretations, as writing them
quickly becomes tedious. We summarize this categorical interpretation of logic in figure 4.1.

We may consider the free-interpretation category to be the representation of a logical
theory within the suitably chosen category of categories. Any inference that holds in the
logic will also hold in the free-interpretation category (indeed, in any sound interpretation)
in the sense that it will be interpreted by an arrow in the corresponding hom set. However,
it is not necessarily the case that every arrow in the free-interpretation category between
interpretations of propositions is the interpretation of a distinct logical inference. In order
for this to hold, we must have chosen a sort of category with just the right structure,
corresponding to universal constructions, needed to interpret the inference schemes of the
given logical system. Such an interpretation is said to be generic. Generic interpretations
are very useful because they allow us to forget about the logic completely and work entirely
within category theory, safe in the knowledge that any results we obtain there can be
translated back to the logic. Thus, given a logical system, the challenge is to identify a
category of categories such that valid inferences for theories correspond precisely to arrows
in their free interpretations.

A good overview of this perspective on categorical logic may be found in [AB09]. The
case of intuitionistic logic is treated in more detail by Lambek and Scott [LS86] and Makkai
[Mak93a; Mak93b]. We now proceed to describe a categorical interpretation of intuitionistic

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 41

first-order logic, called a “hyperdoctrine” interpretation, by building it up in stages.

4.2 Interpreting the Propositional Connectives

We begin with propositional logic. This is the language inductively constructed from atomic
propositions, in the form of unexamined propositional variables, using the propositional
connectives {∧ , ∨ , ⊤ , ⊥ , ⊃}. In the classic Heyting algebra interpretation, which models the
behavior of the consequence relation (⊢), these connectives are interpreted in a partially-
ordered set by meet, join, top, bottom and Heyting implication, respectively. Using a
common method of generalizing a preorder to a category, we may interpret them respectively
as the cartesian product, coproduct, terminal object, initial object and exponential of a
bicartesian closed category.

Definition 4.2.1 (interpretation of atomic propositions) For an arbitrary set of atomic
propositions, 𝒫, an interpretation of 𝒫 in a category ℂ is a function ⟦−⟧ sending atomic
propositions to objects. That is, for P ∈ 𝒫,

⟦P⟧ ∶ ℂ

Definition 4.2.2 (interpretation of propositions) An interpretation of atomic propositions
in a bicartesian closed category, ⟦−⟧𝒫, extends inductively to an interpretation of proposi-
tions by the interpretations of the propositional connectives:

⟦P⟧ ≔ ⟦P⟧𝒫 for P ∈ 𝒫
⟦A ∧ B⟧ ≔ ⟦A⟧ × ⟦B⟧
⟦A ∨ B⟧ ≔ ⟦A⟧ + ⟦B⟧
⟦A ⊃ B⟧ ≔ ⟦A⟧ ⊃ ⟦B⟧

⟦⊤⟧ ≔ 1ℂ
⟦⊥⟧ ≔ 0ℂ

In addition to interpretations for individual propositions, we will need interpretations
for propositional contexts, which we met in the preceding discussions of proof theory. In the
meta-theory of this logic, assumptions are unordered and may be appealed to any number
of times, including possibly zero. We will see that this implies that a propositional context
can be interpreted as a finite product of the interpretations of the propositions it contains.

Definition 4.2.3 (interpretation of propositional contexts) An interpretation of propo-
sitions in a bicartesian closed category, ⟦−⟧𝒫, extends inductively to an interpretation of
propositional contexts by finite products:

⟦∅⟧ ≔ 1
⟦Γ , P⟧ ≔ ⟦Γ⟧ × ⟦P⟧𝒫

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 42

We may form the free interpretation of any propositional language in the category of
bicartesian closed categories.

Definition 4.2.4 (free interpretation of an intuitionistic propositional language) For 𝒫
a set of atomic propositions, we define Prop𝒫 to be the free bicartesian closed category
generated by 𝒫 (as objects) and the free interpretation of the propositional language over
𝒫 to be the interpretation taking each atomic proposition to itself, regarded as an object of
Prop𝒫.

4.3 Interpreting the Term Language

In predicate logic an atomic proposition is not an unanalyzed propositional variable, rather,
it is a predicate constructed from a relation symbol and terms. Before we can give a cate-
gorical interpretation for predicate logic, we must first interpret the language of terms. In
order to concentrate on the logic we will use a very simple language of typed terms. Our
type theory will have no type constructors and our term language will have no (object-level)
term constructors. However, we will still have the meta-level operation of substituting a
term for a variable in a term. The only (meta-level) relation on our terms is syntactic
equality. Thus, we construct a so-called “language of uninterpreted terms”.1 This is what
is typically desired in logic programming, although not in other contexts such as constraint
logic programming or automated theorem proving.

Definition 4.3.1 (interpretation of atomic types) For an arbitrary set of atomic types, 𝒯,
an interpretation of 𝒯 in a category ℂ is a function ⟦−⟧ sending atomic types to objects.
That is, for X ∈ 𝒯,

⟦X⟧ ∶ ℂ

A type over 𝒯 is any expression that can be freely generated from the atomic types
using the type-forming operations of a type theory. So for our purposes, the atomic types
will be the only types.

As in the case for propositions, we will need to interpret not only individual types but
also contexts of types. Refining our previous description, we will say that a typing context
is a finite sequence of types:

X , ⋯ , X

Equivalently, it is an open α-equivalence class of finite sequences of distinct typed variables:

𝑥 ∶ X , ⋯ , 𝑥 ∶ X such that 𝑥 = 𝑥 ⟹ 𝑖 = 𝑗
1 Note that the concept of interpretation in “uninterpreted terms” is distinct to that in “categorical

interpretation”. Due to an unfortunate coincidence of terminology, we will be defining the latter for the
former.

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 43

The variables simply act as indices into the sequence. Although the latter description
comports better with the syntactic presentation of languages, it is useful to recognize that
the role of a variable in a language is simply to refer, a point of view eloquently advocated
in [AM89] and [Tay99].

Definition 4.3.2 (interpretation of typing contexts) An interpretation of types in a carte-
sian category, ⟦−⟧𝒯, extends inductively to an interpretation of typing contexts by finite
products:

⟦∅⟧ ≔ 1
⟦Φ , 𝑥 ∶ X⟧ ≔ ⟦Φ⟧ × ⟦X⟧𝒯

A fundamental operation on typing contexts is that of weakening, which allows us to
forget about some of the variables in scope. For this we adopt terminology and notation
introduced by Taylor in [Tay99]. A special case of context weakening is that of a single
omission, which lets us forget about just the last element of the context:

�̂� ∶ Φ , 𝑥 ∶ X ⟼ Φ

Since our type system is not dependent, the well-formedness of each type in a context
is independent of any other context members. Therefore, we may always safely permute
typing contexts. When no confusion is likely to result, we will do this tacitly. Under
permutation, all context weakenings are generated by the single omissions. Single omissions
are interpreted by complement-projections:

⟦�̂�⟧ ≔ π ∶ ⟦Φ , 𝑥 ∶ X⟧ ⟶ ⟦Φ⟧

A signature for a language of typed terms can be given by providing a set of atomic
types, 𝒯, together with a collection of typed function symbols, ℱ, each of the form:

𝑓 ∈ ℱ(Y , ⋯ , Y ; X)

where each Y is a type and X is an atomic type. The intended meaning is that when the
function symbol 𝑓 is applied to terms of types Y , ⋯ , Y the result is a term of type X. We
follow the usual convention of considering a constant symbol 𝑐 of type X to be a function
symbol 𝑐 ∈ ℱ(∅ ; X).

Definition 4.3.3 (interpretation of function symbols) For ⟦−⟧𝒯 ∶ 𝒯 ⟶ ℂ an interpretation
of typing contexts in a cartesian category and ℱ a collection of function symbols over 𝒯, an
interpretation of ℱ in ℂ is a function ⟦−⟧ sending function symbols to arrows between the
interpretations of their argument context and result type. That is, for 𝑓 ∈ ℱ(Y ,⋯ , Y ; X),

⟦𝑓⟧ ∶ ℂ (⟦Y , ⋯ , Y ⟧𝒯 → ⟦X⟧𝒯)

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 44

Mirroring the inductive construction of terms from function symbols and variables, we
can inductively define their interpretations in a cartesian category. We want to interpret
not only closed terms (those without free variables), but open ones as well. To do so, we
associate to each term a typing context, which must contain at least the free variables that
occur in the term. Thus we form terms in context and write “Φ | 𝑡 ∶ X” to indicate that
term 𝑡 has type X in context Φ. After having done so, we may subsequently refer to this term
as just “𝑡”, unless we wish to discuss the same term in a different context as well. Given a
syntactic term, we can always determine its native (minimal) context by consulting its set
of free variables. However, it is also sensible to consider a term in any context extending its
native context; the superfluous dummy variables simply play no role in the term.

A term is interpreted as an arrow from the interpretation of its context to that of its
type.

Definition 4.3.4 (interpretation of terms) Let ℒ ≔ (𝒯 , ℱ) be the signature of a language
of typed terms, ⟦−⟧𝒯 be an interpretation of typing contexts over 𝒯 in a cartesian category ℂ
and ⟦−⟧ℱ be an interpretation of its function symbols in ℂ. Then ⟦−⟧ℱ extends inductively
to an interpretation of terms in context by precomposition.

lifted variable: for variable 𝑥 ∈ Φ,

⟦Φ | 𝑥 ∶ X ⟧ ≔ π ∶ ⟦Φ⟧𝒯 ⟶ ⟦X ⟧𝒯

applied function symbol: for function symbol 𝑓 ∈ ℱ(Y , ⋯ , Y ; X) and terms
Φ | 𝑡 ∶ Y , ⋯ , 𝑡 ∶ Y ,

⟦Φ | 𝑓(𝑡 , ⋯ , 𝑡) ∶ X⟧ ≔ ⟨⟦𝑡 ⟧ , ⋯ , ⟦𝑡 ⟧⟩ ⋅ ⟦𝑓⟧ℱ ∶ ⟦Φ⟧𝒯 ⟶ ⟦X⟧𝒯

context extension: for term Φ | 𝑡 ∶ X and variable 𝑥 ∉ Φ,

⟦Φ , 𝑥 ∶ X | 𝑡 ∶ X⟧ ≔ ⟦�̂�⟧𝒯 ⋅ ⟦𝑡⟧ ∶ ⟦Φ , 𝑥 ∶ X⟧𝒯 ⟶ ⟦X⟧𝒯

substitution: for terms Φ , 𝑦 ∶ Y | 𝑡 ∶ X and Φ | 𝑠 ∶ Y,

⟦Φ | 𝑡[𝑦↦𝑠] ∶ X⟧ ≔ ⟨id⟦ ⟧𝒯 , ⟦𝑠⟧⟩ ⋅ ⟦𝑡⟧ ∶ ⟦Φ⟧𝒯 ⟶ ⟦X⟧𝒯

A substitution of just one term for a variable is a single substitution. We call the
precomposed arrow in the definition of a term under single substitution the interpretation
of the single substitution:

⟦ [𝑦↦𝑠] ⟧ ≔ ⟨id⟦ ⟧ , ⟦𝑠⟧⟩

The reason that it tuples the interpretation of the substituting term with that of its context
is that in the language, applying such a substitution to a term leaves undisturbed any other

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 45

variables that may occur in the term. We note in passing that the definition of substitution
for terms is just the composition of their interpretations in the Kleisli category of the Φ×−
comonad:

⟦Φ | 𝑡[𝑦↦𝑠] ∶ X⟧ = ⟦𝑠⟧ ⋅ ⟦𝑡⟧ ∶ ℂ × (1 → X)

We will have more to say about this particular comonad in the context of logical derivations
in chapter 6.

There is a standard result known as the “substitution lemma”, which describes properties
of the substitution operation. A corollary of this lemma is that the operation of simultaneous
substitution is well-defined.

Lemma 4.3.5 (substitution lemma) For terms 𝑎 , 𝑏 , 𝑐 and distinct variables 𝑥 , 𝑦, if
𝑥 , 𝑦 ∉ FV(𝑎) and 𝑦 ∉ FV(𝑏) then,

• 𝑎[𝑦↦𝑏] = 𝑎 and

• 𝑐[𝑦↦𝑏][𝑥↦𝑎] = 𝑐[𝑥↦𝑎][𝑦↦𝑏[𝑥↦𝑎]]

Proposition 4.3.6 (categorical substitution and terms) The given interpretation of sub-
stitution respects the substitution lemma. That is, for terms as in the lemma and suitable
contexts,

• ⟦𝑎[𝑦↦𝑏]⟧ = ⟦𝑎⟧ and

• ⟦𝑐[𝑦↦𝑏][𝑥↦𝑎]⟧ = ⟦𝑐[𝑥↦𝑎][𝑦↦𝑏[𝑥↦𝑎]]⟧

Proof.

• Let Φ be a context containing the free variables of both 𝑎 and 𝑏. By hypothesis,
𝑦 ∉ Φ. Then by definition, ⟦Φ | 𝑎[𝑦↦𝑏]⟧ is the composition:

....⟦ ⟧ ..⟦ , ∶ ⟧ ..⟦ ⟧ ..⟦ ⟧.⟦ [↦] ⟧ . ⟦ ̂ ⟧. ⟦ ⟧

but ⟦[𝑦↦𝑏]⟧ ⋅ ⟦�̂�⟧ = ⟨id⟦ ⟧ , ⟦𝑏⟧⟩ ⋅ π⟦ ⟧ = id⟦ ⟧.

• Let Φ be a context such that the following terms are well-defined:

Φ | 𝑎 ∶ X Φ , 𝑥 ∶ X | 𝑏 ∶ Y Φ , 𝑥 ∶ X , 𝑦 ∶ Y | 𝑐 ∶ Z

By definition, ⟦Φ | 𝑐[𝑦↦𝑏][𝑥↦𝑎]⟧ is the composition:

....⟦ ⟧ ..⟦ , ∶ ⟧ ..⟦ , ∶ , ∶ ⟧ ..⟦ ⟧.⟦ [↦] ⟧ .⟦ [↦] ⟧. ⟦ ⟧

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 46

And ⟦Φ | 𝑐[𝑥↦𝑎][𝑦↦𝑏[𝑥↦𝑎]]⟧ is the composition:

....⟦ ⟧ ..⟦ , ∶ ⟧ ..⟦ , ∶ , ∶ ⟧ ..⟦ ⟧.⟦ [↦ [↦]] ⟧ .⟦ [↦] ⟧. ⟦ ⟧

up to a permutation on the context of 𝑐, where ⟦𝑏[𝑥↦𝑎]⟧ is itself the composition:

....⟦ ⟧ ..⟦ , ∶ ⟧ ..⟦ ⟧.⟦ [↦] ⟧ . ⟦ ⟧

Since 𝑐 is arbitrary, we check that ⟦ [𝑥↦𝑎] ⟧ ⋅ ⟦ [𝑦↦𝑏] ⟧ is equal to ⟦ [𝑦↦𝑏[𝑥↦𝑎]] ⟧ ⋅
⟦ [𝑥↦𝑎] ⟧ modulo the permutation. A routine computation shows that both composi-
tions are equal to the tuple

⟨id⟦ ⟧ , ⟦𝑎⟧ , ⟨id⟦ ⟧ , ⟦𝑎⟧⟩ ⋅ ⟦𝑏⟧⟩

We may form the free interpretation of any term language in the category of cartesian
categories.

Definition 4.3.7 (free interpretation of a term language) If ℒ ≔ (𝒯 , ℱ) is a signature for
a typed term language then we define Typeℒ to be the free cartesian category generated by
ℱ (as arrows) and the free interpretation of ℒ in Typeℒ to be the one taking each function
symbol to itself, regarded as an arrow of Typeℒ.

4.4 Interpreting Predicates

A signature for a language of typed predicate logic is formed by adding to the signature of
a term language a collection of typed relation symbols, ℛ, each of the form:

R ∈ ℛ(X , ⋯ , X)

where each X is a type. The intended meaning is that when the relation symbol R is applied
to terms of types X , ⋯ , X the result is an atomic proposition, or predicate.

We want to interpret not only closed predicates (those without free term variables), but
open ones as well. Thus predicates are dependent on their free term variables. This suggests
that we interpret predicates in an indexed category over a base category interpreting their
typing contexts.

Definition 4.4.1 (interpretation of relation symbols) For ⟦−⟧𝒯 ∶ 𝒯 ⟶ ℂ an interpretation
of typing contexts in a cartesian category and ℛ a collection of relation symbols over 𝒯, an
interpretation of ℛ in an indexed category P ∶ ℂ° ⟶ 𝒟 is a function ⟦−⟧ sending relation

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 47

symbols to objects in the fibers over the interpretations of their typing contexts. That is,
for R ∈ ℛ(X , ⋯ , X),

⟦R⟧ ∶ P(⟦X , ⋯ , X ⟧𝒯)

Mirroring the inductive construction of predicates from relation symbols and terms,
we can inductively define their interpretations in an indexed category. As in the case for
terms, we want to keep track of the typing context in which a predicate, and in general,
a proposition, occurs. Thus we form propositions in context and write “Φ | A prop”
to indicate that A is a proposition, all of whose free variables are contained in the typing
context Φ. Just as with terms, it is sensible to consider a proposition in any extension of
its native context. The superfluous dummy variables simply play no role in the proposition.

A predicate is interpreted as an object in the fiber over the interpretation of its context.

Definition 4.4.2 (interpretation of predicates) Let ℒ ≔ (𝒯 , ℱ , ℛ) be the signature of a
typed predicate language, ⟦−⟧𝒯 be an interpretation of typing contexts over 𝒯 and ⟦−⟧ℱ be
an interpretation of terms over ℱ in a cartesian category ℂ. Let ⟦−⟧ℛ be an interpretation
of the relation symbols in an indexed category P ∶ ℂ° ⟶ 𝒟. Then ⟦−⟧ℛ extends inductively
to an interpretation of predicates in context by reindexing.

applied relation symbol: for relation symbol R ∈ ℛ(Y , ⋯ , Y) and terms
Φ | 𝑡 ∶ Y , ⋯ , 𝑡 ∶ Y ,

⟦Φ | R(𝑡 , ⋯ , 𝑡) prop⟧ ≔ ⟨⟦𝑡 ⟧ℱ , ⋯ , ⟦𝑡 ⟧ℱ⟩∗ (⟦R⟧ℛ) ∶ P(⟦Φ⟧𝒯)

context extension: for predicate Φ | A prop and variable 𝑥 ∉ Φ,

⟦Φ , 𝑥 ∶ X | A prop⟧ ≔ ⟦�̂�⟧∗𝒯 (⟦A⟧) ∶ P(⟦Φ , 𝑥 ∶ X⟧𝒯)

substitution: for predicate Φ , 𝑦 ∶ Y | A prop and term Φ | 𝑠 ∶ Y,

⟦Φ | A[𝑦↦𝑠] prop⟧ ≔ ⟦ [𝑦↦𝑠] ⟧∗ℱ (⟦A⟧) ∶ P(⟦Φ⟧𝒯)

Note that in each case, the arrow in the base used to reindex is the same one that
is precomposed in definition 4.3.4. We can form free interpretations of typed predicate
languages as well.

Definition 4.4.3 (free interpretation of a predicate language) If ℒ ≔ (𝒯,ℱ,ℛ) is a signature
for a typed predicate language and Typeℒ is the free cartesian category generated by ℱ, then
we define Predℒ ∶ Typeℒ° ⟶ 𝒟 to be the free indexed category of sort 𝒟 generated by ℛ
and the free interpretation of ℒ in Predℒ to be the one taking each relation symbol to itself,
regarded as an object in the fiber over its typing context.

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 48

This is essentially the categorical interpretation of predicates used in [AM89] and [KP96]
to model the operational semantics of logic programming for Horn logic, which can be
formulated without connectives.

4.5 Interpreting Quantification

It was Lawvere who observed that the quantifiers act as adjoints to reindexing in indexed
categories [Law69]. This characterization permits the quantifiers to be treated algebraically,
rather than merely as infinitary conjunctions and disjunctions. Interestingly, it also permits
for the definition of quantification over, not just bound variables, but rather a broader class
of bound terms. The familiar case of quantification over a bound variable is that where the
reindexing is induced by a single omission.

However, the adjoint characterization is not all there is to quantification. There is
also the interaction between quantification and substitution. It turns out that this adds
significant complexity to the categorical treatment of quantification, as was observed by
Lawvere in [Law70] and investigated systematically by Seely in [See83]. Although there
is much more that could be said about the matter, in order to interpret first-order logic
we need consider only the familiar case of quantification over bound variables, where the
situation is comparatively simple. First we formalize the conditions necessary for a class of
arrows in a category to support quantifiers:

Definition 4.5.1 (having quantifiers) Let P ∶ ℂ° ⟶ Cat be an indexed category and 𝒟 be
a collection of ℂ-arrows. We will say that P has quantifiers for arrows in 𝒟 if:

• P-images of 𝒟-arrows have left and right adjoints:

𝑑 ∶ ℂ (Z → Y) ∈ 𝒟 ⟹ ∃ Σ𝑑 , Π𝑑 ∶ P(Z) ⟶ P(Y) . Σ𝑑 ⊣ 𝑑∗ ⊣ Π𝑑

• the set 𝒟 is closed under pullbacks with arbitrary ℂ-arrows; that is, for 𝑑 ∈ 𝒟 and
coterminal 𝑓 ∶∶ ℂ, there is a pullback of 𝑑 and 𝑓, and the 𝑓 pullback of 𝑑 is again in
𝒟.

• the P-image of a pullback with a 𝒟-arrow satisfies the Beck-Chevalley condition (defi-
nition 3.1.11). This implies:

..

.. . ..

.. . ..

.....

⌟
⟹ ..

..() . ..()

..() . ..()

.

∗

.

∗

.Q . Q.≅

for 𝑑 ∈ 𝒟 and Q∈ {Σ , Π}.

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 49

When P has quantifiers for an arrow 𝑑, we will write “∃𝑑” and “∀𝑑” for Σ𝑑 and Π𝑑,
respectively.

Essentially, the first condition guarantees that functors Σ𝑑 and Π𝑑 have the universal
properties of the quantifiers, while the second and third conditions ensure that quantification
is compatible with substitution, as we’re about to see.

4.6 The Hyperdoctrine Interpretation

We have now assembled all the pieces necessary to define the type of category in which we
want to interpret typed intuitionistic first-order logic.

Definition 4.6.1 (hyperdoctrine) A hyperdoctrine is an indexed bicartesian closed cat-
egory over a cartesian base, that has quantifiers for projections.

The term “hyperdoctrine” was introduced by Lawvere in [Law69] to describe a slightly
different indexed category. Makkai [Mak93a] used the term “Heyting fibration” for a similar
concept. Sometimes the term “Heyting category” is also used, though often with the as-
sumption that the fibers are posets. Anyway, we must pick a word to use here, and we have
done so, but the choice has been fairly capricious. Because the purpose of a hyperdoctrine
is to interpret a typed intuitionistic first-order logic, the precise definition must untimately
depend on the particular type theory and logic involved. In the sequel, we will see that this
definition is consistent with the choices we have made.

We are now nearly ready to give the definition of interpretation of a first-order language
in a hyperdoctrine. There remains just one technical issue in our path, the issue of strictness.
We would like to interpret substitution on propositions by reindexing between fibers. Indeed,
for atomic propositions, we have already done so by definition 4.4.2. But there arises a
technical complication. In logic it is expected that the propositional connectives commute
“on the nose” with substitutions. That is, for propositions A and B and term 𝑡, we have:

(A ∧ B)[𝑥↦𝑡] = A[𝑥↦𝑡] ∧ B[𝑥↦𝑡]
⊤[𝑥↦𝑡] = ⊤

(A ∨ B)[𝑥↦𝑡] = A[𝑥↦𝑡] ∨ B[𝑥↦𝑡]
⊥[𝑥↦𝑡] = ⊥

(A ⊃ B)[𝑥↦𝑡] = A[𝑥↦𝑡] ⊃ B[𝑥↦𝑡]

(4.1)

Likewise for the quantifiers:

(∀𝑥 ∶ X . A)[𝑦↦𝑡] = ∀𝑥 ∶ X . (A[𝑦↦𝑡])
(∃𝑥 ∶ X . A)[𝑦↦𝑡] = ∃𝑥 ∶ X . (A[𝑦↦𝑡]) (4.2)

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 50

provided that 𝑥 ≠ 𝑦 and 𝑥 ∉ FV(𝑡), which can always be arranged by α-conversion.

By virtue of the reindexing functors being bicartesian closed in the case of the proposi-
tional connectives, and satisfying the Beck-Chevalley condition in the case of the quantifiers,
we will indeed get commutativity of reindexing with the interpretations of the connectives
– but only up to a canonical isomorphism, which is not necessarily equality.

For example, for a term Φ | 𝑡 ∶ X and proposition Φ , 𝑥 ∶ X | A ∧ B Prop, the object
⟦ [𝑥↦𝑡] ⟧∗(⟦A∧B⟧) will indeed be a cartesian product of ⟦ [𝑥↦𝑡] ⟧∗(⟦A⟧) and ⟦ [𝑥↦𝑡] ⟧∗(⟦B⟧)
in P(⟦Φ⟧). But there is no a priori reason to assume that it will be the same cartesian
product as ⟦A[𝑥↦𝑡] ∧ B[𝑥↦𝑡]⟧. In order for this to obtain, a choice of which cartesian
product in each fiber interprets conjunction must be made, and the reindexing functors
between the fibers must respect this choice.

This situation exemplifies the general distinction between giving categorical definition in
terms of universal properties on the one hand, and in terms of specified structure on the other.
While universal properties are much-preferred by categorists for respecting the principle of
equivalence [nla], they come at the cost of requiring coherence isomorphisms (possibly up
to even higher-dimensional equivalences) to mediate in any equations that we would like to
impose on objects.

For our purposes, the shortest path to a categorical interpretation of intuitionistic first-
order logic involves imposing specified structure. Thus we will require that the interpretation
of substitution be strict with respect to that of the connectives, in other words, that it
satisfy (4.1) and (4.2) on the nose. For the propositional connectives, we achieve this by
insisting that the bicartesian closed functors between fibers respect the specified bicartesian
closed structure within them. Thus from now on, “BCC” will refer to the 2-category of
bicartesian closed categories with specified structure, and functors between them that respect
this structure. For the quantifiers, we insist that the Beck-Chevalley condition hold strictly;
that is, that the diagram in the fibers in the third condition of definition 4.5.1 commute
on the nose. Having made this choice, we may finally define the interpretation of typed
first-order language in a hyperdoctrine.

Definition 4.6.2 (interpretation of first-order logic) Let ℒ ≔ (𝒯 , ℱ , ℛ) be the signature
of a typed first-order language, ⟦−⟧𝒯 be an interpretation of typing contexts over 𝒯 and
⟦−⟧ℱ be an interpretation of terms over ℱ in a cartesian category ℂ, and let ⟦−⟧ℛ be
an interpretation of predicates in a hyperdoctrine P ∶ ℂ° ⟶ BCC. Then ⟦−⟧ℛ extends
inductively to an interpretation of propositions in context by the interpretations of the
connectives.

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 51

For any propositions Φ | A , B Prop and Φ , 𝑥 ∶ X | C Prop,

⟦Φ | A ∧ B Prop⟧ ≔ ⟦A⟧ × ⟦B⟧ ∶ P(⟦Φ⟧)
⟦Φ | ⊤ Prop⟧ ≔ 1 ∶ P(⟦Φ⟧)

⟦Φ | A ∨ B Prop⟧ ≔ ⟦A⟧ + ⟦B⟧ ∶ P(⟦Φ⟧)
⟦Φ | ⊥ Prop⟧ ≔ 0 ∶ P(⟦Φ⟧)

⟦Φ | A ⊃ B Prop⟧ ≔ ⟦A⟧ ⊃ ⟦B⟧ ∶ P(⟦Φ⟧)
⟦Φ | ∀𝑥 ∶ X . C prop⟧ ≔ Π⟦�̂�⟧(⟦C⟧) ∶ P(⟦Φ⟧)
⟦Φ | ∃𝑥 ∶ X . C prop⟧ ≔ Σ⟦�̂�⟧(⟦C⟧) ∶ P(⟦Φ⟧)

Lemma 4.6.3 (substitution and propositional connectives) For any interpretation of a
first-order language in a hyperdoctrine, the interpretations of the propositional connectives
commute with the interpretation of substitution.

Proof. Precisely because substitution is interpreted by a bicartesian closed functor that
respects the interpretations of the propositional connectives.

Lemma 4.6.4 (substitution and quantification) For any interpretation of a first-order
language in a hyperdoctrine, the interpretations of the quantifiers commute with the inter-
pretation of (capture-avoiding) substitution.

Proof. This property is ensured by the definition of having quantifiers. Let P ∶ ℂ° ⟶ BCC

be a hyperdoctrine and ⟦−⟧ be an interpretation of ℒ in P. Given term Φ | 𝑡 ∶ Y of ℒ,
the diagram on the left is a pullback in ℂ where the two vertical arrows are projections.
Thus for Q∈ {Σ , Π} the diagram on the right commutes as well. For any proposition
Φ , 𝑥 ∶ X , 𝑦 ∶ Y | A prop of ℒ, chasing ⟦A⟧ around that diagram gives the desired result.

..

..⟦ , ∶ ⟧ . ..⟦ , ∶ , ∶ ⟧

..⟦ ⟧ . ..⟦ , ∶ ⟧

.

⟦ [↦] ⟧

.

⟦ [↦] ⟧

. ⟦ ̂⟧.⟦ ̂⟧ .

⌟
⟹ ..

..(⟦ , ∶ ⟧) . ..(⟦ , ∶ , ∶ ⟧)

..(⟦ ⟧) . ..(⟦ , ∶ ⟧)

.

⟦ [↦] ⟧∗

.

⟦ [↦] ⟧∗

. Q⟦ ̂⟧.Q⟦ ̂⟧

Definition 4.6.5 (free interpretation of an intuitionistic first-order language) If ℒ ≔ (𝒯 ,
ℱ , ℛ) is a signature for a first-order language and Typeℒ is the free cartesian category
generated by ℱ, then we define Propℒ ∶ Typeℒ ⟶ BCC to be the free hyperdoctrine over
Typeℒ generated by ℛ and the free interpretation of ℒ in Propℒ to be the one taking each
relation symbol to itself, regarded as an object in the fiber of the interpretation of its context.

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 52

When the language under discussion is clear or irrelevant, we will drop the subscript ℒ.
We should note that using the name “Prop” both for a free bicartesian closed category of
a propositional language and for the functor of a free hyperdoctrine of first-order language
should cause no confusion. When we write “Prop” in the former sense, we simply mean
Prop(⟦Φ⟧) for some unspecified typing context Φ.

If we were to define the hyperdoctrine interpretation for intuitionistic first-order logic
by universal properties rather than specified structure, it would provide an interpretation
naturally suited to logic with explicit substitution. There, we would have coherence iso-
morphisms such as ⟦(A ∧ B)[𝑥↦𝑡]⟧ ≅⟶ ⟦A[𝑥↦𝑡] ∧ B[𝑥↦𝑡]⟧ playing the role of the explicit
substitutions. We could also consider these morphisms to be non-invertible, yielding a co-lax
version of a hyperdoctrine with directed rewritings for applying substitutions.

4.7 Posetal Hyperdoctrines

We have explained how the concept of a hyperdoctrine is designed to interpret typed in-
tuitionistic first-order logic. But of course the definition of a hyperdoctrine does not make
any reference to a type theory or logic. We will see in chapter 5 that there is a remark-
able relationship between normal natural deduction derivations and arrows in the fibers of
a free hyperdoctrine. But first we attempt to provide some familiarity with the concept
of hyperdoctine by considering two “naturally-occurring” instances, in which the fibers are
posets.

Perhaps the most familiar hyperdoctrine is the subset hyperdoctrine, where the base
category is Set, the category of (small) sets and the indexing functor is Sub, which takes
each set X to the partial order of its subsets, ℘(X), regarded as a category, and each function
𝑓 ∶ X ⟶ Y to the induced inverse image map:

𝑓
℘(Y) ⟶ ℘(X)

V ⟼ {𝑥 ∈ X | 𝑓(𝑥) ∈ V}

Each fiber is a bounded complete distributive lattice under union and intersection, and thus
a Heyting algebra; in other words, a bicartesian closed poset. Implication is definable as:

A ⊃ B ≔ C . C ∧ A ≤ B

Inverse image is a continuous map and thus preserves the Heyting algebra structure.

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 53

Inverse image has a left adjoint, given by the existential image map:

∃𝑓
℘(X) ⟶ ℘(Y)

U ⟼ {𝑦 ∈ Y | ∃𝑥 ∈ 𝑓 ({𝑦}) . 𝑥 ∈ U}

which may be written in terms of 𝑓 rather than 𝑓 using guarded quantification as,

{𝑦 ∈ Y | ∃𝑥 ∈ X . 𝑓(𝑥) = 𝑦 ∧ 𝑥 ∈ U}

It also has a right adjoint, given by the universal image map:

∀𝑓
℘(X) ⟶ ℘(Y)

U ⟼ {𝑦 ∈ Y | ∀𝑥 ∈ 𝑓 ({𝑦}) . 𝑥 ∈ U}

which may also be written using guarded quantification as,

{𝑦 ∈ Y | ∀𝑥 ∈ X . 𝑓(𝑥) = 𝑦 ⊃ 𝑥 ∈ U}

When 𝑓 is a projection function, π ∶ Y × Z ⟶ Y, its inverse image defines a cylinder:

π (V) = V × Z

and the quantifiers correspond to the projection of the smallest cylinder containing, respec-
tively the largest cylinder contained in, the given set:

∃π(U) = {𝑦 ∈ Y | ∃𝑧 ∈ Z . (𝑦 , 𝑧) ∈ U} ∀ π(U) = {𝑦 ∈ Y | ∀𝑧 ∈ Z . (𝑦 , 𝑧) ∈ U}

which we abbreviate as ∃𝑧 ∈ Z . U and ∀𝑧 ∈ Z . U, respectively. This has a particularly
intuitive graphical representation, shown in figure 4.2.

In this case the adjunctions governing the quantifiers stipulate,

U ⊆ V × Z
∃𝑧 ∈ Z . U ⊆ V and

V ⊆ ∀𝑧 ∈ Z . U
V × Z ⊆ U

and the unit and counit of the two adjunctions tell us that,

η∃ ∶ U ⊆ (∃𝑧 ∈ Z . U) × Z
ε∃ ∶ ∃𝑧 ∈ Z . (V × Z) ⊆ V and

η∀ ∶ V ⊆ ∀𝑧 ∈ Z . (V × Z)
ε∀ ∶ (∀𝑧 ∈ Z . U) × Z ⊆ U

all of which we can easily verify from the figure by inspection. Incidentally, the counit of
the existential adjunction and the unit of the universal one are in fact equalities. It is a

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 54

..×...

∀ ∈ .

.

∃ ∈ .

Figure 4.2: Quantification over projections in Set

theorem that the unit, respectively counit, of an adjunction is an isomorphism just in case
the left, respectively right, adjoint functor is full and faithful. Thus we may rest assured
that V ⊆ V in Sub(Y) iff V × Z ⊆ V × Z in Sub(Y × Z).

Having quantifiers for projections requires for any pullback of a projection, necessarily
of the form on the left, the corresponding diagram for each quantifier, shown on the right,
commutes as well – and in any case strictly, because equality is the only form of isomorphism
available in a poset.

..

..× . ..×

.. . ..

..

×

...

⌟
⟹ ..

..℘(×) . ..℘(×)

..℘() . ..℘()

..

(×)

.Q . Q

There, for any U ⊆ Y × Z and 𝑥 ∈ X, we have:

𝑥 ∈ Qπ((𝑓 × id) (U))
⟺ [definition Qπ]

Q𝑧 ∈ Z . (𝑥 , 𝑧) ∈ (𝑓 × id) (U)
⟺ [definition (−)]

Q𝑧 ∈ Z . (𝑓(𝑥) , 𝑧) ∈ U
⟺ [definition Qπ]

𝑓(𝑥) ∈ Qπ(U)
⟺ [definition (−)]

𝑥 ∈ 𝑓 (Qπ(U))

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 55

We can interpret a language of typed first-order logic in this hyperdoctrine by assigning
each atomic type to a set, each function symbol to a function and each relation symbol to
a subset of the interpretation of its type. This is the approach taken in (set-based) model
theory.

Another important example is that of a sieve hyperdoctrine. Given any category ℂ, a
presheaf on ℂ is a functor F ∶ ℂ° ⟶ Set. The category of presheaves on ℂ, ℂ°⊃Set, is the
functor category having presheaves on ℂ for objects and natural transformations between
them for arrows. The covariant Yoneda embedding, Y ∶ ℂ ⟶ ℂ° ⊃ Set is the currying of
the hom bifunctor (swapping argument order), which we know to be full and faithful by the
Yoneda lemma. A presheaf in the image of the Yoneda embedding is called representable.

A subfunctor is a just subobject in a functor category. In more detail, a natural
transformation is monic just in case all of its components are. Given parallel functors
F and G, we call F (a representative of) a subfunctor of G if there is a monic natural
transformation φ ∶ F ⟶ G. Just as in the case of ordinary subobjects, this induces a partial
order on coterminal monic natural transformations, and by extension, on their domains:
given another monic natural transformation ψ ∶ E ⟶ G, if ψ factors through φ as ψ = θ ⋅φ,
then θ is unique because φ is monic and it is monic because ψ is monic. Then we say
E ≤ F ≤ G (since id is also monic).

An equivalent (and intuitive) characterization of a subfunctor of a representable functor
in a presheaf category is that of a sieve. A sieve on an object X ∶ ℂ is a set U of arrows with
codomain X that is closed under precomposition by ℂ-arrows:

𝑓 ∶ ℂ (Y → X) ∈ U ∧ 𝑔 ∶ ℂ (Z → Y) ⟹ 𝑔 ⋅ 𝑓 ∈ U

This closure under precomposition is sometimes called “saturation”. Of course any set of
coterminal arrows may be saturated to a sieve on their common codomain. We will write
“⟨−⟩” for the sieve generated from a set by saturation. A sieve on X turns out to be the
same thing as a subfunctor of ℂ (− → X).

In a sieve hyperdoctrine, the base category is the category of presheaves on some under-
lying category, which being a topos, has finite products. The indexing functor takes each
presheaf to the partial order of its subfunctors:

Sub ∶ ℂ° ⊃ Set ⟶ Poset

Because a presheaf category is the free cocompletion of its underlying category, it suffices
to consider just the representables. Therefore we may equivalently say that the indexing
functor takes each object of the underlying category to its poset of sieves, where the partial
order is just inclusion (U ≤ U ≔ U ⊆ U). From this perspective, given an arrow 𝑓 ∶ ℂ (X →

CHAPTER 4. CATEGORICAL INTUITIONISTIC FIRST-ORDER LOGIC 56

Y), the reindexing functor it generates is:

𝑓∗

Sub(ℂ (− → Y)) ⟶ Sub(ℂ (− → X))
V ⟼ {𝑥 ∶∶ ℂ | 𝑥 ⋅ 𝑓 ∈ V}

As in the case of subsets, the fibers are Heyting algebras whose structure is preserved by
reindexing. Reindexing has a left adjoint:

Σ𝑓
Sub(ℂ (− → X)) ⟶ Sub(ℂ (− → Y))

U ⟼ {𝑦 ∶∶ ℂ | ∃𝑥 ∈ 𝑓∗(⟨{𝑦}⟩) . 𝑥 ∈ U}

Said more simply, this takes a sieve U on X to the sieve on Y containing the composition of
each arrow in U with 𝑓. Reindexing also has a right adjoint:

Π𝑓
Sub(ℂ (− → X)) ⟶ Sub(ℂ (− → Y))

U ⟼ {𝑦 ∶∶ ℂ | ∀𝑥 ∈ 𝑓∗(⟨{𝑦}⟩) . 𝑥 ∈ U}

This takes a sieve U on X to the sieve on Y containing those arrows, all of whose factorizations
through 𝑓 are by arrows in U.

We can interpret a language of typed first-order logic in this hyperdoctrine by assigning
each atomic type to an object of ℂ, each function symbol to an arrow of ℂ and each relation
symbol to a sieve on the interpretation of its type. In this way each proposition can be
regarded as its set of satisfying substitutions. This provides a useful generalization of a
Herbrand interpretation, in which predicates are represented by the set of tuples of
closed terms that satisfy them. In contrast, in a sieve hyperdoctrine closed terms play no
special role, providing for a non-ground semantics. This is the categorical semantics used
by Lipton et al. [FFL03] and Krishnan [Kri05] in their categorical investigations of logic
programming.

These two hyperdoctrines are examples of a more general phenomenon. Given any
topos ℂ, it is a theorem that the indexed category of subobjects, Sub ∶ ℂ° ⟶ Poset forms
a Heyting category, that is, an indexed bicartesian closed category with posetal fibers.
Furthermore, the Beck-Chevalley condition holds for the Sub-image of any pullback square
in the base. Since a topos has all limits, such a hyperdoctrine has quantifiers for every
ℂ-arrow. The details may be found in [MM92].

Chapter 5

Natural Deduction by Adjunction

The use of adjoint functors to provide universal constructions for interpreting logical connec-
tives goes back to at least the work of Lawvere in the late 1960s. Although Lawvere clearly
intended the structure of a hyperdoctrine to interpret intuitionistic first-order logic, there
is no mention of any particular system of formal derivation in [Law69] or [Law70]. These
present examples involving the consequence relation, resulting in hyperdoctrines with pre-
order fibers, like our examples in chapter 4. In the latter, Lawvere writes, “honest proof
theory would presumably also yield a hyperdoctrine with nontrivial P(X), but a syntactically-
presented one”.

The connection to “honest proof theory” was first made in the propositional case in a
series of articles by Lambek [Lam68; Lam69; Lam72] culminating in his book with Scott
[LS86], and in the first-order case by Seely in [See83]. In [HM92] Harnik and Makkai write,

Prawitz advanced the thesis that two deductions in natural deduction represent
the same proof iff they are inter-reducible in a suitable lambda-calculus. We
believe that, after a suitable and natural link is established between natural
deduction and the Lambek calculus, Prawitz’s inter-reducibility will turn out
to be equivalent to equality deducible under the [axioms of cartesian closed
categories with coproducts (interpreting minimal propositional logic)].

We will show, in fact, that convertibility of natural deduction derivations in intuitionistic
first-order logic is equivalent to equality of arrows in the fibers of a free hyperdoctrine.

In this chapter we explain how the version of hyperdoctrine that we have constructed
captures the concept of normal derivation in Gentzen’s system of natural deduction. We
show that the adjunctions characterizing the interpretations of the connectives determine
inference rules and conversion relations for a system of derivation in a completely uniform
way, and that these rules and conversions are equivalent to those of natural deduction. Thus

57

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 58

we show how the derivation system of natural deduction could have been “discovered” from
the categorical semantics of intuitionistic first-order logic. This can be seen as a contribution
to Melliès’s program (mentioned in the introduction) of providing algebraic semantics for
proof theory.

By viewing natural deduction as a categorical graphical language, we see that hypothetical
derivations play the role of adjoint complements. We see also that the connectives are
naturally partitioned into two sets depending upon their chirality; that is, on whether they
are characterized by a right or a left adjoint functor. We believe that this chirality-based
perspective provides an important complement to the introduction rule-based perspective
(verificationism) and elimination rule-based perspective (pragmatism) found in proof theory.
We will call the connectives that are characterized by right adjoint functors (those in the
set {⊤ , ∧ ,⊃ , ∀}) right connectives, and likewise, the connectives that are characterized by
left adjoint functors (those in the set {⊥ , ∨ , ∃}) left connectives.

Our main result in this chapter is that by viewing derivations as a categorical graphical
language, inference rules of introduction and elimination, as well as derivation conversions of
local reduction, local expansion and permutation, can be derived uniformly for the connectives
from their characterizations by adjunctions; and that the rules and conversions obtained in
this way are equivalent to those of natural deduction. The demonstration of this result will
occupy the next few sections.

Theorem 5.0.1 (natural deduction by adjunction) The adjunction-theoretic interpreta-
tion of the connectives of intuitionistic first-order logic extends to an interpretation of the
inference rules and derivation conversions of a derivation system of natural deduction in the
following uniform way. For each class of connectives the adjoint-theoretic concept on the
right provides as interpretation for the proof-theoretic concept on the left.

• For right connectives,

introduction rules: the adjoint complement operation (−♭),

elimination rules: the component of the counit (ε),
local reductions: the factorization of arrows from a left adjoint image in the universal

property of the counit (F(𝒟♭) ⋅ ε = 𝒟),

permutation conversions: (which are implicit in Gentzen’s syntax) the naturality
of the hom set isomorphism in the domain coordinate (ℰ ⋅ 𝒟♭ = (F(ℰ) ⋅ 𝒟)♭),

local expansions: the fact that identity maps on right adjoint images are adjoint
complements of counit components (id = ε♭).

• For left connectives,

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 59

introduction rules: the component of the unit (η),

elimination rules: the adjoint complement operation (−♯),

local reductions: the factorization of arrows to a right adjoint image in the universal
property of the unit (η ⋅ G(𝒟♯) = 𝒟),

permutation conversions: the naturality of the hom set isomorphism in the codomain
coordinate (𝒟♯ ⋅ ℰ = (𝒟 ⋅ G(ℰ))♯),

local expansions: the fact that identity maps on left adjoint images are adjoint com-
plements of unit components (id = η♯).

In the presence of the distributive law (lemma 3.3.2) and Frobenius reciprocity (lemma
3.3.3), both of which hold in a hyperdoctrine, the inference rules obtained in this way are
interchangeable for those in figure 2.1, in the sense that they have the the same premises,
conclusion and hypothetical subderivations – except in the case of the non-invertible quan-
tifier rules (∀− and ∃+), where the derived rules decompose their traditional versions into a
strictly logical rule and a substitution. This fact will prove very useful in our considerations
of proof search in the sequel.

The equations interpreting the relations on derivations are described in definition 3.1.1,
lemma 3.1.3 and lemma 3.1.2, respectively. The derived permutation conversions for right
connectives do not appear in Gentzen’s syntax because there the respective operations on
precomposed derivations are implicit. Making these operations explicit sheds light on the
algebraic principles governing the meta-theory of natural deduction. It also allows us to
see that the traditional local expansions for right connectives may be decomposed into a
permutation and a “hyper-local” expansion.

We wish to interpret natural deduction derivations as arrows in categories whose objects
interpret propositional contexts. In order to do this we must make explicit two things that
are left tacit in presentations of natural deduction like that in figure 2.1. The first is the
source of a derivation, that is, its collection of logical assumptions. In a category, every
arrow has a well-defined domain as well as a codomain, yet in the inference rules for natural
deduction the sources of subderivations are left implicit. If a derivation is a proof , then its
source is the empty context. However, we need to be able to compose derivations, so we
must be able to accommodate arbitrary sources.

The second thing we must make explicit is the category in which the interpretation of
a derivation resides. We must keep track of the category we are working in because some
inference rules have subderivations interpreted in different categories. Specifically, rules
corresponding to adjoint complement operations (i.e. introduction rules of right connectives
and elimination rules of left connectives) generally have their minor subderivation (which we
will always write on the right) in a category different from that of their major premise and

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 60

conclusion, which are always in the same category. In these rules, the primitive inference
from major premise to conclusion is the adjoint complement of the minor subderivation,
schematically:

()
𝒟

() ∗
and

()
𝒟
()

∗

for adjunction F ⊣ G. Intuitively, such rules assert that the minor subderivation may be
traded for a primitive inference from the major premise to the conclusion. The composition
of inferences in a derivation is interpreted by the composition of the arrows interpreting those
inferences in a category. The leftmost branch, or trunk of a derivation will be interpreted
as a composition of arrows from the interpretation of the assumptions to that of the end-
formula.

When thinking about the fibers of a hyperdoctrine, it is safe to intuitively regard objects
as interpretations of individual propositions. This is because the logic being interpreted
includes the connectives truth and conjunction, which, like the empty context and context
extension operation, are interpreted by finite products. A propositional context is equivalent
to a proposition comprising the conjunction of its contents, but strictly speaking, in natural
deduction a context is a meta-level thing while an equivalent conjunction is an object-level
thing. We say that a conjunction internalizes a propositional context by representing it as
a proposition.

In the following discussion we will assume that our interpretations are free, that is, in the
hyperdoctrine Prop; and we will mercifully stop writing the interpretation brackets. But
the result holds for any hyperdoctrine interpretation.

In order to view natural deduction derivations as arrows, we need a natural deduction
notation for derivations in the categories we will find ourselves in. Recall that an arrow in a
product of categories is an ordered pair consisting of an arrow from each. Therefore, we will
represent a derivation in the category Prop × Prop as a pair of derivations in Prop placed
side by side:

(,)
(𝒟 , 𝒟)
(,) =

𝒟 𝒟

As for derivations in the terminal category 𝟙, there is only one, namely the identity derivation
on ∗: ∗

∗
∗ = ∗

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 61

We now establish the claims of the theorem for each connective in turn. In each case,
we will distinguish the adjoint-theoretic “moral rule” described in the theorem with the
annotation “⋆” whenever it differs from the corresponding rule in figure 2.1.

5.1 Conjunction

Recall that we interpret conjunction as the cartesian product and that this bifunctor is right
adjoint to a diagonal functor (∆ ⊣ ∧). We can summarize this adjunction with the following
instance of diagram (3.4):

..

. ..∧ . .

..Prop ∶∧ .

..Prop × Prop ∶ ..∆ ..(,) .

. . ..∆(∧) .

.
⟨𝒟 , 𝒟 ⟩

.
(𝒟 , 𝒟)

.

∆()

.

(,)(,)

.

𝒟 ∧ 𝒟

.

∆⟨𝒟 , 𝒟 ⟩

.

⇑

. (5.1)

Here ⟨− , −⟩ is the tupling operation, 𝑓𝑠𝑡 and 𝑠𝑛𝑑 are the projections and ∆ ≔ ⟨id , id⟩ is
the internal diagonal. The 2-cell β is just equality, but it is instructive to give it a name
and orientation, none the less. We will address the meaning of a conjunction of derivations
(𝒟 ∧ 𝒟) momentarily.

In this adjunction, the adjoint complement operation −♭ takes a pair of derivations with
common assumptions to a single derivation of the conjunction of their respective goals:

(𝒟 , 𝒟) ∶ ∆Γ ⟶ (A , B)
♭

⟼ ⟨𝒟 , 𝒟 ⟩ ∶ Γ ⟶ A ∧ B

This allows us to trade (𝒟 , 𝒟) for ⟨𝒟 , 𝒟 ⟩. We can express this trade with the following
inference rule of natural deduction:

𝒟 𝒟
♭

⟼

𝒟 𝒟

∧ ∧ ⋆

The assumptions of the surrendered derivations are discharged, and in exchange we receive
a new one-step derivation of a conjunction. We would like to call this the introduction rule
for conjunction. It is not exactly the rule given by Gentzen, but it is interchangeable for it

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 62

once the implicit sources of the subderivations are made explicit:

𝒟 𝒟

∧ ∧

The counit of this adjunction is the ordered pair of projections (𝑓𝑠𝑡 ,𝑠𝑛𝑑). When written
as inference rules, they form exactly the ordered pair of elimination rules for conjunction:

A B ⟼
∧ ∧ ∧ ∧

We can now see how the factorization in the universal property of the counit,

∆⟨𝒟 , 𝒟 ⟩ ⋅ (𝑓𝑠𝑡 , 𝑠𝑛𝑑) = (𝒟 , 𝒟)

expresses the local reduction for conjunction in the category Prop × Prop:

𝒟 𝒟

∧ ∧ ⋆

∧

𝒟 𝒟

∧ ∧ ⋆

∧ ∧ ⋆
⟼

𝒟 𝒟

This explains why we call the commuting triangle of the universal property of the counit
“β”: short-cutting it performs β-reduction.

The naturality of the hom set bijection of this adjunction in the domain coordinate,

ℰ ⋅ ⟨𝒟 , 𝒟 ⟩ = ⟨ℰ ⋅ 𝒟 , ℰ ⋅ 𝒟 ⟩

says that any derivation precomposed to a ∧+⋆ rule may be moved into the minor branch
by duplication:

ℰ 𝒟 𝒟

∧ ∧ ⋆ ∧⇄⋆
⟼

ℰ

𝒟

ℰ

𝒟

∧ ∧ ⋆

Here C may internalize a context. This transformation is necessary with our formulation of
the ∧+⋆ rule in order to unite a β-redex that may be split between the the major and minor
branches of the rule. The situation is dual to that for disjunction permutation with the ∨−
rule, as described in (2.1).

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 63

The equation for the adjoint complement of a counit component,

id ∧ = ⟨𝑓𝑠𝑡 , 𝑠𝑛𝑑⟩

expresses the local expansion for conjunction:

A ∧ B ∧ ⋆
⟼

∧
∧ ∧ ∧ ∧

∧ ∧ ⋆

We recover the formulation of table 2.3 by precomposing an arbitrary derivation and apply-
ing the permutation conversion.

Finally, we explain the arrow 𝒟 ∧𝒟 that appears in diagram (5.1). In natural deduction,
connectives such as conjunction are defined only on propositions and not on derivations as
well. In contrast, the cartesian product is a functor, acting on the arrows, as well as on
the objects of a category. The categorical description of conjunction allows us to extend
its definition functorially to derivations by specifying what the conjunction of derivations
would have to be if it were defined. In particular, the characterization of the adjoint functor
image of arrows (lemma 3.1.4) tells us that for any derivations 𝒟 and 𝒟 ,

𝒟 ∧ 𝒟 = ⟨𝑓𝑠𝑡 ⋅ 𝒟 , 𝑠𝑛𝑑 ⋅ 𝒟 ⟩

In natural deduction notation this yields the definition:

∧
𝒟 ∧ 𝒟

∧
∧→≔

∧

∧ ∧

𝒟

∧ ∧

𝒟

∧ ∧ ⋆

5.2 Disjunction

Recall that we interpret disjunction as the coproduct and that this bifunctor is left adjoint
to a diagonal functor (∨ ⊣ ∆). We can summarize this adjunction with the following instance

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 64

of diagram (3.4):

..

. ..∆(∨) . .

..Prop × Prop ∶ ..(,) ..∆ .

..Prop ∶ ..∨ .. .

. . ..∨ .

.
(𝒟 , 𝒟)

.
[𝒟 , 𝒟]

.

(,)(,)

.

∇()

.

∆[𝒟 , 𝒟]

.

𝒟 ∨ 𝒟

..

⇓

(5.2)

Here [− , −] is the cotupling operation, 𝑖𝑛𝑙 and 𝑖𝑛𝑟 are the coprojections, ∇ ≔ [id , id] is
the internal codiagonal and β is a notable equality. As in the case for conjunction, we may
conservatively extend the definition of disjunction to derivations.

In this adjunction, the adjoint complement operation −♯ takes a pair of derivations
with common goal to a single derivation of that goal from the disjunction of the respective
assumptions:

(𝒟 , 𝒟) ∶ (A , B) ⟶ ∆C
♯

⟼ [𝒟 , 𝒟] ∶ A ∨ B ⟶ C

It allows us to trade (𝒟 , 𝒟) for [𝒟 , 𝒟]. We can express this trade with the following
inference rule of natural deduction:

𝒟 𝒟
♯

⟼
∨

𝒟 𝒟

∨ ⋆

This “moral” elimination rule for disjunction looks superficially like Gentzen’s rule, but
there is a subtle complication involving contexts. Recall that in Gentzen’s rule there is an
implicit ambient propositional context. If we write it explicitly, then the rule looks like this:

ℰ
∨

,
𝒟

,
𝒟

∨

Because it occurs in the trunk of the derivation, Γ must be a valid context in the category
Prop. So we must explain how it gets into the minor subderivation in Prop×Prop. We may
suspect that it is transported there by the right adjoint functor ∆, but we must ensure that
this belief is justified by the properties of our categorical interpretation.

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 65

Using a conjunction to internalize the context, we have the natural bijection:

(𝒟 , 𝒟) ∶ ((Γ , A) , (Γ , B)) ⟶ ∆C
♯

⟼ [𝒟 , 𝒟] ∶ (Γ ∧ A) ∨ (Γ ∧ B) ⟶ C

We could recover Gentzen’s elimination rule for disjunction in the presence of an ambient
context Γ from our adjunction-based moral rule if we had an arrow 𝑑𝑖𝑠𝑡 ∶ Γ , (A ∨ B) ⟶
(Γ ∧ A) ∨ (Γ ∧ B), since then we could construct:

.... .., (∨) ..(∧) ∨ (∧) ...⟨ , ℰ⟩ .. [𝒟 , 𝒟]

Fortunately, the distributive law of products over coproducts in the presence of exponentials
(lemma 3.3.2) provides just such an arrow. What’s more, since this arrow is an isomorphism,
the Gentzen rule is equivalent to the adjoint-theoretic one in any bicartesian closed category.

We derive a rule interchangeable for Gentzen’s rule of disjunction elimination by dis-
tributing the ambient context across the disjunction. In (pseudo)natural deduction notation:

ℰ
∨

(∧) ∨ (∧)

,
𝒟

,
𝒟

∨ ⋆

The distributive law is of course admissible in Gentzen’s system as:

∨
∧ ∧

(∧) ∨ (∧)
∨ ∧ ∧

(∧) ∨ (∧)
∨

(∧) ∨ (∧) ∨

The unit of this adjunction is the ordered pair of coprojections (𝑖𝑛𝑙 , 𝑖𝑛𝑟). When written
as inference rules, they form exactly the ordered pair of introduction rules for disjunction:

A B ⟼ ∨
∨

∨
∨

We can now see how the factorization in the universal property of the unit,

(𝑖𝑛𝑙 , 𝑖𝑛𝑟) ⋅ ∆[𝒟 , 𝒟] = (𝒟 , 𝒟)

expresses the local reduction for disjunction in the category Prop× Prop using the adjoint-
theoretic moral elimination rule:

∨
∨ 𝒟 𝒟

∨ ⋆ ∨
∨ 𝒟 𝒟

∨ ⋆ ∨ ⋆
⟼

𝒟 𝒟

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 66

Adding an ambient context poses no problems since it just means precomposing the dis-
tributive law. In this case, we get the local reduction:

ℰ

∨
∨

,
𝒟

,
𝒟

∨

ℰ

∨
∨

,
𝒟

,
𝒟

∨ ∨⟼

,
ℰ

𝒟
,
ℰ

𝒟

The naturality of the hom set bijection of this adjunction in the codomain coordinate,

[𝒟 , 𝒟] ⋅ ℰ = [𝒟 ⋅ ℰ , 𝒟 ⋅ ℰ]

says that any derivation postcomposed to a ∨−⋆ rule may be moved into the minor branch
by duplication:

∨
𝒟 𝒟

∨ ⋆

ℰ ∨⇄⋆
⟼

∨

𝒟

ℰ

𝒟

ℰ

∨ ⋆

This allows us to unite a β-redex that may be split between the the minor branch and
the conclusion of the rule. Adding an ambient context again just means precomposing the
distributive law.

The equation for the adjoint complement of a unit component,

id ∨ = [𝑖𝑛𝑙 , 𝑖𝑛𝑟]

expresses the local expansion for disjunction:

A ∨ B ∨⟼
∨ ∨

∨
∨

∨

∨ ∨ ⋆

Precomposing an arbitrary derivation yields the version in table 2.3.

The arrow 𝒟 ∨ 𝒟 appearing in in diagram (5.2) reminds us that we may extend the
definition of disjunction to derivations. In particular, the characterization of the adjoint
functor image of arrows (lemma 3.1.4) tells us that for any derivations, 𝒟 and 𝒟 ,

𝒟 ∨ 𝒟 = [𝒟 ⋅ 𝑖𝑛𝑙 , 𝒟 ⋅ 𝑖𝑛𝑟]

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 67

In natural deduction notation this yields the definition:

∨
𝒟 ∨ 𝒟

∨
∨→≔

∨

𝒟

∨
∨

𝒟

∨
∨

∨ ∨ ⋆

5.3 Truth

Recall that we interpret truth as a terminal object and that the constant functor picking it
out is right adjoint to the only functor to a terminal category (! ⊣ ⊤). We can summarize
this adjunction with the following instance of diagram (3.4):

..

.

..Prop ∶

..𝟙 ∶ ..!() ..∗ .

. . ..!() .

.
!

.

𝒟 ∗

.

!

..

(∗)

.

!(!)

.

⇑

. (5.3)

Here the triangle in 𝟙 is degenerate since id∗ is the only arrow in the whole category. Thus
η(Γ) = ! is the unique arrow from Γ to ⊤.

In this adjunction, the adjoint complement operation −♭ takes an identity derivation on
∗ to a derivation of ⊤ from arbitrary assumptions:

𝒟 = id∗ ∶ !(Γ) ⟶ ∗
♭

⟼ ! ∶ Γ ⟶ ⊤

We can express this with the following inference rule of natural deduction:

∗
♭

⟼
∗ ⋆

Of course, the minor subderivation of this rule is trivial. Eliding it gives us Gentzen’s rule.

The counit of this adjunction has only one component, id∗. By rights, this should provide
the elimination rules for truth, but it tells us nothing about the category Prop, or any other
category for that matter. The absence of derived elimination rules for truth comes as a
welcome relief.

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 68

The universal property of the counit is just an equation between id∗ and itself in the
category 𝟙, which tells us nothing useful. This comports with the Prawitz interpretation,
where having no elimination rules implies that there are no introduction-elimination detours
to short-cut.

The naturality of the hom set bijection of this adjunction in the domain coordinate,

ℰ ⋅ ! (ℰ) = ! (ℰ)

says that any derivation precomposed to a ⊤+⋆ rule may be unceremoniously tossed into
the black hole of the minor branch:

ℰ
∗ ⋆ ⇄⋆

⟼
∗ ⋆

The equation for the adjoint complement of a counit component,

id = !

expresses the local expansion for truth:

⊤
⋆

⟼
∗ ⋆

We recover the formulation of table 2.3 by precomposing an arbitrary derivation and apply-
ing the permutation conversion.

As a functor, ⊤ has no choice but to take id∗ to id .

5.4 Falsehood

Recall that we interpret falsehood as an initial object and that the constant functor picking
it out is left adjoint to the only functor to a terminal category (⊥ ⊣ !). We can summarize
this adjunction with the following instance of diagram (3.4):

..

. ..!() . .

..𝟙 ∶ ..∗ ..!() .

..Prop ∶

.

.
𝒟 ∗

.

¡

..

¡

.

!(¡)

.

(∗)

..

⇓

(5.4)

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 69

Again, the triangle in 𝟙 is degenerate, making ε(A) = ¡ the unique arrow from ⊥ to A.

In this adjunction, the adjoint complement operation −♯ takes an identity derivation on
∗ to a derivation of an arbitrary goal from ⊥:

𝒟 = id∗ ∶ ∗ ⟶ !(A)
♯

⟼ ¡ ∶ ⊥ ⟶ A

We can express this with the following inference rule of natural deduction:

∗
♯

⟼
∗ ⋆

As with ⊤+⋆, eliding the trivial minor subderivation gives us Gentzen’s rule. Although ⊥ is
a left connective like ∨, there is no issue with ambient contexts here because all information
about the context gets destroyed in the category 𝟙 anyway.

The unit of this adjunction has only the component, id∗. Like the counit for ⊤, this tells
us nothing about the category Prop, leaving us without an introduction rule for ⊥, as we
would expect. Since the universal property of the unit tells us nothing, there is no local
reduction for ⊥ either.

The naturality of the hom set bijection of this adjunction in the codomain coordinate,

¡ (ℰ) ⋅ ℰ = ¡ (ℰ)

says that any derivation postcomposed to a ⊥−⋆ rule may be unceremoniously tossed into
the black hole of the minor branch:

∗ ⋆

ℰ ⇄⋆
⟼

∗ ⋆

The equation for the adjoint complement of a unit component,

id = ¡

expresses the local expansion for falsehood:

⊥
⋆

⟼
∗ ⋆

Precomposing an arbitrary derivation yields the version in table 2.3.

As a functor, ⊥ has no choice but to take id∗ to id .

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 70

5.5 Implication

Recall that we interpret implication as the exponential and that exponentiation is right
adjoint to the cartesian product by the curry adjunction (−×A ⊣ A⊃−). We can summarize
this adjunction with the following instance of diagram (3.4):

..

. ..⊃ (∧) . .

..Prop ∶⊃ .

..Prop ∶ .., .. .

. . ..(⊃) × .

.
𝒟

.

𝒟

.

()

.

()

.

⊃ 𝒟

.

(𝒟) ×

.

⇑

. (5.5)

Here λ is the abstraction operation (currying), 𝑒𝑣𝑎𝑙 is evaluation (modus ponens) and
𝑝𝑎𝑖𝑟 ≔ λ (id ×) is the pairing operation that is the currying of the identity map on
− × A.

In this adjunction, the adjoint complement operation −♭ takes a derivation of B under
the assumption A to a derivation of A ⊃ B without that assumption:

𝒟 ∶ Γ , A ⟶ B
♭

⟼ λ 𝒟 ∶ Γ ⟶ A⊃ B

We express this with the following inference rule of natural deduction:

,
𝒟 ♭

⟼

,
𝒟

⊃ ⊃ ⋆

This rule is interchangeable for Gentzen’s rule with an explicit ambient context.

The counit of this adjunction is the evaluation map 𝑒𝑣𝑎𝑙 . When written as an inference
rule, this forms a moral elimination rule for implication:

B ⟼
(⊃) ×

⊃ ⋆

But this leads to a small difficulty. In Gentzen’s system, the rule ⊃− has two subderivations.
If we interpret them as a derivation in the product category Prop × Prop, then ⊃− cannot

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 71

be an arrow in the category Prop. One solution is to interpret the Gentzen ⊃− rule as the
composition (∧+⋆) ⋅ (⊃−⋆):

𝒟
⊃

𝒟

(⊃) ∧ ∧ ⋆

⊃ ⋆

Alternatively, we may think of the two subderivations not as a derivation in a product
category but rather as a product of derivations in the category Prop.

In any case, the factorization in the universal property of the counit,

(λ 𝒟) × A ⋅ 𝑒𝑣𝑎𝑙 = 𝒟

expresses the local reduction for implication:

,
𝒟

⊃ ⊃ ⋆

⊃ ⊃ ⋆
⟼

,
𝒟

The naturality of the hom set bijection of this adjunction in the domain coordinate,

ℰ ⋅ λ 𝒟 = λ (ℰ × A ⋅ 𝒟)

says that any derivation precomposed to a ⊃+⋆ rule may be moved into the minor branch
by forming the product with the identity derivation on A:

ℰ
,
𝒟

⊃ ⊃ ⋆ ⊃⇄⋆
⟼

ℰ
,
𝒟

⊃ ⊃ ⋆

Here C may internalize a context.

The equation for the adjoint complement of a counit component,

id ⊃ = λ (𝑒𝑣𝑎𝑙 (−))

expresses the local expansion for implication:

A ⊃ B ⊃ ⋆
⟼

⊃
(⊃) ×

⊃ ⋆

⊃ ⊃ ⋆

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 72

We recover the formulation of table 2.3 by precomposing an arbitrary derivation and apply-
ing the permutation conversion.

Finally, implication may be extended to a functor in its covariant coordinate by lemma
3.1.4:

A ⊃ 𝒟 = λ (𝑒𝑣𝑎𝑙 ⋅ 𝒟)

In natural deduction notation this yields the definition:

⊃
⊃𝒟
⊃

⊃→≔
⊃

(⊃) ×
⊃ ⋆

𝒟

⊃ ⊃ ⋆

5.6 Universal Quantification

We interpret universal quantification as the right adjoint to reindexing by the interpretation
of a single omission (�̂�∗ ⊣ ∀𝑥). We can summarize this adjunction with the following instance
of diagram (3.4):

..

. ..∀ ∶ . ̂∗ . .

..Prop() ∶∀ ∶ . .

..Prop(, ∶) ∶ ..̂∗ .. .

. . ..̂∗(∀ ∶ .) .

.
𝒟

.

𝒟

.

∀ ()

.

∀ ()

.

∀ ∶ . 𝒟

.

̂∗(𝒟)

.

⇑

. (5.6)

Here 𝑔𝑒𝑛 is the operation of universal generalization. We do not know of any commonly
used names for the unit and counit of this adjunction. Reindexing by a single omission
just adds a dummy variable and is invisible in the concrete syntax of propositions and
derivations. However, we will sometimes write these reindexings explicitly to emphasize the
adjoint structure we are dealing with.

In this adjunction, the adjoint complement operation −♭ takes a derivation from as-
sumptions in which a given variable does not occur free to a derivation of the universal

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 73

quantification over that variable of the goal:

𝒟 ∶ �̂�∗Γ ⟶ A
♭

⟼ 𝑔𝑒𝑛 𝒟 ∶ Γ ⟶ ∀𝑥 ∶ X . A

We can express this with the following inference rule of natural deduction:

̂∗
𝒟 ♭

⟼

̂∗
𝒟

∀ ∶ . ∀ ⋆

This is our moral introduction rule for universal quantification. It is equivalent to the
Gentzen rule with the context variable 𝑥 acting as the eigenvariable. Observe that the side
condition of the Gentzen rule is automatically enforced since the trunk of the derivation is
in the category Prop(Φ), where the variable 𝑥 is not in scope.

The counit of this adjunction when written as an inference rule becomes our moral
elimination rule:

A ⟼
̂∗(∀ ∶ .)

∀ ⋆

The corresponding Gentzen rule allows us to conclude any instance of the formula A in
which a type-appropriate term 𝑡 is substituted for the variable 𝑥, but any remaining free
variables of A are left undisturbed. Categorically, this corresponds to reindexing by the
interpretation of the single substitution induced by the term in context Φ | 𝑡 ∶ X. Thus the
Gentzen elimination rule corresponds to (ε∀ (A))[𝑥↦𝑡], as shown:

..

..∀ ∶ . ..̂∗(∀ ∶ .) ..∀ ∶ .

..[↦]

.. .., ∶ ..

.

̂

.

[↦]

..

∀ ()

.

(∀ ())[↦]

(5.7)

The Gentzen rule gives us a result that is in some sense stronger by yielding a derivation
in the typing context Φ. But in exchange it requires us to immediately choose a term of
type X in that context to act as the representative of its type under consideration. The
adjoint-theoretic moral rule takes a more relaxed approach. It allows us the option, but not
the obligation, of supplying a representative term at some point in the future, while initially
selecting the context variable 𝑥. To wit, the context variable 𝑥 is a term of type X, but only
in the extended context Φ , 𝑥 ∶ X, and not in the original context Φ. At any point we may

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 74

choose a representative term Φ | 𝑡 ∶ X to use in place of this context variable by performing
the substitution [𝑥↦𝑡]. Because substitution commutes with the propositional connectives
(lemma 4.6.3) and quantifiers (lemma 4.6.4), it does not matter when we eventually supply
this term. But until we do so our derivation is valid only in the extended context, a world
in which a term of the specified type exists by fiat, in the form of the context variable. The
moral version has the advantage that we need not decide which term 𝑡 to substitute for 𝑥
in A at the time we apply the rule. We will use this property to good effect when we turn
our attention to proof search in the sequel.

The factorization in the universal property of the counit,

�̂�∗(𝑔𝑒𝑛 𝒟) ⋅ ε∀ = 𝒟

expresses the local reduction for universal quantification in the category Prop(Φ , 𝑥 ∶ X):

̂∗

̂∗
𝒟

̂∗(∀ ∶ .)
̂∗(∀ ⋆)
∀ ⋆ ∀ ⋆

⟼

̂∗
𝒟

Applying a single substitution for 𝑥 to both sides corresponds to the version in table 2.2.

The naturality of the hom set bijection of this adjunction in the domain coordinate,

ℰ ⋅ 𝑔𝑒𝑛 𝒟 = 𝑔𝑒𝑛 (�̂�∗ℰ ⋅ 𝒟)

says that any derivation precomposed to a ∀+⋆ rule may be moved into the minor branch
by adding the dummy variable 𝑥:

ℰ
̂∗
𝒟

∀ ∶ . ∀ ⋆ ∀⇄⋆
⟼

̂∗
̂∗ℰ
̂∗
𝒟

∀ ∶ . ∀ ⋆

The equation for the adjoint complement of a counit component,

id∀ ∶ . = 𝑔𝑒𝑛 (ε∀ −)

expresses the local expansion for universal quantification:

∀𝑥 ∶ X . A ∀ ⋆
⟼

∀ ∶ .
̂∗(∀ ∶ .)

∀ ⋆

∀ ∶ . ∀ ⋆

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 75

We recover a formulation equivalent to that of table 2.3 by precomposing an arbitrary
derivation and applying the permutation conversion.

Universal quantification may be extended to a functor by using lemma 3.1.4 to determine
its action on arrows:

∀𝑥 ∶ X . 𝒟 = 𝑔𝑒𝑛 (ε∀ ⋅ 𝒟)

In natural deduction notation this yields the definition:

∀ ∶ .
∀ ∶ . 𝒟
∀ ∶ .

∀→≔
∀ ∶ .

̂∗(∀ ∶ .)
∀ ⋆

𝒟

∀ ∶ . ∀ ⋆

5.7 Existential Quantification

Finally, we interpret existential quantification as the left adjoint to reindexing by the in-
terpretation of a single omission (∃𝑥 ⊣ �̂�∗). We can summarize this adjunction with the
following instance of diagram (3.4):

..

. ..̂∗(∃ ∶ .) . .

..Prop(, ∶) ∶̂∗ .

..Prop() ∶ ..∃ ∶

. . ..∃ ∶ . ̂∗ .

.
𝒟

.

𝒟

.

∃ ()

.

∃ ()

.

̂∗(𝒟)

.

∃ ∶ . 𝒟

..

⇓

(5.8)

Here 𝑖𝑛𝑑 is meant to convey indifference about the bound variable.1

In this adjunction, the adjoint complement operation −♯ takes a derivation with a goal in
which a given variable does not occur free to a derivation from the existential quantification
over that variable of the assumption:

𝒟 ∶ A ⟶ �̂�∗B
♯

⟼ 𝑖𝑛𝑑 𝒟 ∶ ∃𝑥 ∶ X . A ⟶ B
1 We feel tempted to use the phrase “existential indifference” here, but fear that it may already have an

altogether different meaning.

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 76

We can express this with the following inference rule of natural deduction:

𝒟
̂∗

♯

⟼
∃ ∶ .

𝒟
̂∗ ∃ ⋆

This is our moral elimination rule for existential quantification. As with the moral rule
for universal introduction, the context variable 𝑥 plays the role of the eigenvariable and
Gentzen’s side condition is automatically enforced because the trunk of the derivation is in
the category Prop(Φ), where 𝑥 is not in scope.

As in the case for disjunction elimination, however, this rule is at least not obviously
equivalent to Gentzen’s rule because it does not account for an ambient propositional con-
text. If we write out Gentzen’s rule with explicit global assumptions, it becomes:

ℰ
∃ ∶ .

, ∶ , [↦]
𝒟

∃

As in the case of disjunction, we reason that the global context must be valid in the fiber
of the trunk of the derivation, Prop(Φ). Therefore, it is the syntactically identical �̂�∗-image
of Γ that appears in the minor subderivation in Prop(Φ , 𝑥 ∶ X).

Using a conjunction to internalize the context, we have the natural bijection:

𝒟 ∶ �̂�∗Γ , A ⟶ �̂�∗(B)
♯

⟼ 𝑖𝑛𝑑 𝒟 ∶ ∃𝑥 ∶ X . (�̂�∗Γ ∧ A) ⟶ B

We could recover Gentzen’s elimination rule for existential quantification in the presence
of an ambient context Γ from our adjunction-based moral rule if we had an arrow 𝑓𝑟𝑜𝑏 ∶
Γ , ∃𝑥 ∶ X . A ⟶ ∃𝑥 ∶ X . (�̂�∗Γ ∧ A), since then we could construct:

.... .., ∃ ∶ . ..∃ ∶ . (̂∗ ∧) ...⟨ , ℰ⟩ .. 𝒟

This time we are saved by Frobenius reciprocity (lemma 3.3.3), which provides just such an
arrow. Because this arrow is invertible, the Gentzen rule is equivalent to adjoint-theoretic
one in a hyperdoctrine. Like the distributive law for disjunction, Frobenius reciprocity
allows a left connective to be compatible with contexts by providing a means of distributing
an ambient context across the connective.

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 77

We derive a rule interchangeable for Gentzen’s rule of existential elimination by precom-
posing Frobenius reciprocity with the moral rule. In (pseudo)natural deduction notation:

ℰ
∃ ∶ .

∃ ∶ . ̂∗ ∧

̂∗ ,
𝒟
̂∗ ∃ ⋆

The admissibility of the rule 𝑓𝑟𝑜𝑏 in Gentzen’s system is analogous to that of 𝑑𝑖𝑠𝑡.

The unit of this adjunction when written as an inference rule becomes our moral intro-
duction rule:

A ⟼ ̂∗(∃ ∶ .) ∃ ⋆

Dual to the case of ∀−⋆, we recover the Gentzen rule by reindexing along a single substitution:

..

..[↦]

..∃ ∶ . ..̂∗(∃ ∶ .) ..∃ ∶ .

.. .., ∶ ..

.

̂

.

[↦]

..

∃ ()

.

(∃ ())[↦]

(5.9)

This decomposition of the rule into a purely logical rule and a substitution has important
implications for the operational semantics of proof search. In particular, it means that we
need not select a witness term at the time we apply the rule, but may instead temporarily use
the context variable 𝑥. This has the effect of leaving 𝑥 as a free variable (i.e. metavariable
or logic variable) to be instantiated later, for example through unification. But it also means
that in order to obtain a derivation in the world in which we started, the typing context Φ,
we must eventually choose a witness term Φ | 𝑡 ∶ X to substitute for the context variable 𝑥.
Otherwise, we have a derivation that is valid only in a world where such a term is assumed
to exist.

The importance of knowing which fiber we are in is illustrated by the attempt to prove
the existence of a magical fairy from the well-known fact that all fairies are indeed magical:

Example 5.7.1 (magical fairies) If we allow F to represent the type of fairies and M the

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 78

predicate that 𝑥 is magical, then we may derive 𝑥 ∶ F | ∀𝑥 ∶ F . M ⊢ ∃𝑥 ∶ F . M as shown.

..

..∀ ∶ . ..̂∗(∀ ∶ .) ..∀ ∶ .

.. .. .

..∃ ∶ . ..̂∗(∃ ∶ .) ..∃ ∶ .

..∅ ..∶ ..∅

.

̂

.

[↦?]

..

∀ ()

. ∃ ().

(∀ () ⋅ ∃ ())[↦?]

Thus the fulfillment of childhood dreams awaits us in our own world – just as soon as we
are able to produce any fairy whatsoever.

The factorization in the universal property of the unit,

η∃ ⋅ �̂�∗(𝑖𝑛𝑑 𝒟) = 𝒟

expresses the local reduction for existential quantification in the category Prop(Φ , 𝑥 ∶ X):

̂∗(∃ ∶ .) ∃ ⋆ 𝒟
̂∗

̂∗
̂∗(∃ ⋆) ∃ ⋆

⟼
𝒟
̂∗

Precomposing Frobenius reciprocity and applying a single substitution for 𝑥 to both sides
corresponds to the version in table 2.2.

The naturality of the hom set bijection of this adjunction in the codomain coordinate,

𝑖𝑛𝑑 (𝒟) ⋅ ℰ = 𝑖𝑛𝑑 (𝒟 ⋅ �̂�∗ℰ)

says that any derivation postcomposed to a ∃−⋆ rule may be moved into the minor branch
by adding the dummy variable 𝑥:

∃ ∶ .

[]
𝒟
̂∗ ∃ ⋆

ℰ ∃⇄⋆
⟼

∃ ∶ .

[]
𝒟
̂∗
̂∗ℰ
̂∗ ∃ ⋆

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 79

Adding an ambient context again means precomposing Frobenius reciprocity.

The equation for the adjoint complement of a unit component,

id∃ ∶ . = 𝑖𝑛𝑑 (η∃ −)

expresses the local expansion for existential quantification:

∃𝑥 ∶ X . A ∃ ⋆
⟼

∃ ∶ . ̂∗(∃ ∶ .) ∃ ⋆

∃ ∶ . ∃ ⋆

Finally, existential quantification may be extended to a functor by using lemma 3.1.4 to
determine its action on arrows:

∃𝑥 ∶ X . 𝒟 = 𝑖𝑛𝑑 (𝒟 ⋅ η∃)

In natural deduction notation this yields the definition:

∃ ∶ .
∃ ∶ . 𝒟
∃ ∶ .

∃→≔
∃ ∶ .

𝒟

̂∗(∃ ∶ .) ∃ ⋆

∃ ∶ . ∃ ⋆

This completes the proof of theorem 5.0.1.

5.8 Genericity of Free Hyperdoctrines

Using the interpretations of natural deduction inference rules and derivation conversions de-
scribed in theorem 5.0.1, we can see that hyperdoctrines interpretations of natural deduction
derivations are sound.

Corollary 5.8.1 (soundness of hyperdoctrine interpretations for natural deduction) To
any natural deduction derivation 𝒟 of Φ | Γ ⊢ A in intuitionistic first-order logic and
any interpretation ⟦−⟧ of the language of 𝒟 in a hyperdoctrine P, there corresponds an
arrow ⟦𝒟⟧ ∶ P(⟦Φ⟧) (⟦Γ⟧ → ⟦A⟧). Furthermore, the extension of interpretations to natural
deduction derivations is well-defined, in the sense that derivations that are equivalent under
the conversion relations are interpreted by the same arrow.

Proof. We have just seen how each inference rule of Gentzen’s natural deduction can be
built from an adjoint-theoretic “moral” rule that is interpreted by an arrow in the fibers of
a hyperdoctrine. The composition of primitive inferences is interpreted by the composition

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 80

of the corresponding arrows and the substitution of a term for a free variable in a proposition
or derivation is interpreted by reindexing between fibers. Thus the composition of the arrows
in the trunk of the moral version of 𝒟 is an arrow in the specified fiber and hom set.

Derivation interpretations are well-defined since the interpretation of each of the con-
version relations of local reduction, permutation and local expansion is a consequence of
the properties of adjunctions, as described in definition 3.1.1, lemma 3.1.3 and lemma 3.1.2,
respectively.

In addition, due to the coincidence between relations on arrows generated by the con-
version relations for natural deduction derivations and those determined by adjunctions, we
are able to see that free hyperdoctrine interpretations of natural deduction derivations are
generic.

Corollary 5.8.2 (genericity of free hyperdoctrine interpretations for natural deduction)
Let ℒ be a language of intuitionistic first-order logic and Propℒ be its free hyperdoctrine
interpretation. For any propositional context Γ and proposition A of ℒ in typing context Φ,
the set of equivalence classes of natural deduction derivations of Φ | Γ ⊢ A is in bijection
with the hom set Propℒ(Φ) (Γ → A), where the equivalence is that generated by the local
reductions, local expansions and permutation conversions.

Proof. As described by Barr and Wells in [BW98], generic interpretations are characterized
by the properties of having “no junk” and “no confusion”. “No junk” means that every
arrow of the interpreting category is the interpretation of an inference in the logical system
from the interpretation of its premises to that of its conclusion. “No confusion” means
that equations between arrows that hold in the interpreting category hold between the
interpreted inferences the in the logical system as well.

no junk: Since Propℒ is the free hyperdoctrine generated by ℒ, the only arrows that ex-
ist in the fibers are those generated from the universal constructions interpreting the
connectives by identity, composition and reindexing. As we have seen, these univer-
sal constructions may all be characterized by adjunctions whose units and counits
interpret the moral introduction and elimination rules of left and right connectives
respectively, and whose natural bijections interpret the dual inference rules.

no confusion: The only equations that hold between arrows in a free hyperdoctrine are
those imposed by the adjunctions interpreting the connectives. These are generated
by the universal property of the counit for right connectives and the universal property
of the unit for left connectives.

CHAPTER 5. NATURAL DEDUCTION BY ADJUNCTION 81

The interpretations of the moral elimination rules of right connectives and introduction
rules of left connectives are natural transformations because these rules are schematic
in their propositional variables. The introduction rules of right connectives and elimi-
nation rules of left connectives provide adjoint complements to arrows from left adjoint
images, and to right adjoint images, respectively. The local expansions together with
the permutation conversions ensure that adjoint complements are unique by guaran-
teeing that all arrows to right adjoint images, respectively, from left adjoint images,
can be formed in this way as follows:

• for right connectives,

𝒟
()

∗⟼

𝒟
()

(∘)()
∗

() ∗ ∗⇄⟼

()
(𝒟)

(∘)()
∗

() ∗

• for left connectives,

()
𝒟 ∗⟼

() (∘)() ∗

()
∗

𝒟 ∗⇄⟼
()

(∘)() ∗

(𝒟)
()

∗

Finally, the local reductions require arrows with adjoint complements to satisfy the
universal properties of the counit, respectively, unit. These universal properties char-
acterize adjunctions, thus all equations generated by the adjunctions are forced by the
derivation conversions.

In summary, we have that normal equivalence classes of natural deduction derivations
correspond precisely to arrows in the fibers of free hyperdoctrines. This ensures the sound-
ness and completeness of natural deduction with respect to free hyperdoctrine categorical
semantics.

Chapter 6

Categories for Cartesian Logics

The free hyperdoctrine Prop provides an ideal categorical structure in which to interpret
the rules of natural deduction for typed intuitionistic first-order logic. It is also perfectly
adequate for interpreting natural deduction derivations. This is in large part due to the
fact that both the meta-level operation of context extension and the object-level connective
conjunction are interpreted by the cartesian product, which permits us to treat propositional
contexts as though they were propositions and to construct tuples of derivations. Although
we may interpret derivations directly in Prop, the fit here is not ideal. Part of the reason
has to do with the fact that within a derivation, members of the global context may be used
any number of times. For example, in the derivation,

Γ
𝒟
⋮
𝒟
B

assumptions from Γ may be used in 𝒟 as well as in 𝒟 . Indeed, the global assumptions may
be used anywhere throughout a derivation, so each of the arrows composed together to form
a derivation should “pass along” the global context in case it is needed again further down
the chain; except at the very end where it may finally be discarded. It is certainly possible
to do this “by hand” using tupling and projection, but it is not a very good fit. To speak
evocatively, in Gentzen’s orchard, Γs rain down onto derivation trees from heaven, while
in the category Prop we try to account for this phenomenon by describing it as a complex
irrigation system. So it is worth thinking about how this could be described more naturally,
both for convenience, and so as not to obscure the elegant adjoint-theoretic structure we
have been investigating.

82

CHAPTER 6. CATEGORIES FOR CARTESIAN LOGICS 83

6.1 Meta-Theoretic Considerations

It is worth pausing to consider the meta-theoretic assumptions at work here. The fact that
we may appeal to a derivation’s resources (in the form of the assumptions) as many times
as we like, including possibly none at all, without having to keep an account means that
we are not treating them in a conservative fashion. Intuitively, the contents of contexts
act like abstract ideas or chemical catalysts, in that they are eternal, as opposed to like
physical resources, which may be transformed or consumed by the interactions in which
they participate. Furthermore, there is a tacit assumption that the context members may
always be disentangled from the consequences derived from them. Such assumptions may
seem uncontroversial to mathematicians, but probably less-so to chemists or economists.
They are wildly as odds with our understanding of the laws governing physical reality,
where conservativity seems to rule. This observation has led to investigations of linear
logics [Gir87].

We shall call these kinds of nonconservative contexts cartesian and logics in which
contexts behave this way cartesian logics. The rationale is that one way to characterize
the cartesian product is as a symmetric monoidal product with duplication and deletion
maps. Thus our intuitionistic logic is cartesian, as opposed to linear.

6.2 The Kleisi Category Prop

Fortunately, we have already encountered a categorical construction that will allow us to
interpret the cartesian nature of contexts. We can construct a category that automatically
propagates the global context, and what’s more, Prop can be embedded into this category
so that the construction doesn’t interfere with anything we’ve done so far.

Let Γ be a propositional context and consider the endofunctor

Γ , −
Prop ⟶ Prop

A ⟼ Γ , A
𝒟 ⟼ id , 𝒟

(6.1)

We will make a slight notational shorthand and refer to this functor as “Γ”. Γ determines a
comonad on Prop by:

ε ≔ π ∶ Γ , − ⟶ − δ ≔ ∆Γ , id ∶ Γ , − ⟶ Γ , Γ , −

It is easy to check that the comonad laws are satisfied. We will call this the context
comonad.

CHAPTER 6. CATEGORIES FOR CARTESIAN LOGICS 84

In the Kleisli category of this comonad, Prop , an arrow of type A ⟶ B is actually a
derivation in Prop of type Γ , A ⟶ B. And the composition of 𝒟 ∶ Prop (A → B) and
𝒟 ∶ Prop (B → C) becomes:

..

..Prop ∶ .., ,

. .., .., .. .

.

.
𝒟

.
𝒟

.
∆ ,

.

, 𝒟

For the Kleisli resolution of this comonad, we have:

F
Prop ⟶ Prop

A ⟼ Γ , A
𝒟 ∶ A ⟶ B ⟼ ⟨π , 𝒟⟩ ∶ Γ , A ⟶ Γ , B

G
Prop ⟶ Prop

A ⟼ A
𝒟 ∶ A ⟶ B ⟼ π ⋅ 𝒟 ∶ Prop (Γ , A → B)

Where F (𝒟) is the Kleisli extension of the derivation 𝒟:

𝒟 ≔ (∆Γ , 𝑖𝑑) ⋅ (id , 𝒟) = ⟨π , 𝒟⟩

which is exactly what is needed to propagate the global context throughout a derivation.

Thus we may take a pure derivation ℰ ∶ Prop (A → B), which does not depend on the
global context, and create the contextual derivation G (ℰ) ∶ Prop (Γ , A → B). And from
any contextual derivation 𝒟 ∶ Prop (Γ , A → B) we may create the context-propagating
derivation 𝒟 ≔ F (𝒟) ∶ Prop (Γ , A → Γ , B). Finally, we may always discard the context to
recover the pure proposition B from (Γ , −)(B) by postcomposing the component of the
counit ε . And the naturality of the counit together with the comonad counit law guarantee
that it is harmless to propagate and then later discard a context: 𝒟 ⋅ ε(B) = 𝒟.

6.3 The Polynomial Category Prop[𝑥]

The category Prop is isomorphic to a perhaps more intuitive category constructed in [LS86]
called the polynomial category over Prop and written “Prop[𝑥]”. The construction pro-
ceeds by freely adjoining an arrow 𝑥 ∶ Prop (1 → Γ), thereby providing a means to obtain
a “free copy” of the global context to each object of the category via its component of the
natural transformation,

η[]

idProp[] ⟶ Γ , −
A ⟼ ⟨! ⋅ 𝑥 , id ⟩ ∶ A ⟶ Γ , A

CHAPTER 6. CATEGORIES FOR CARTESIAN LOGICS 85

which is the unit of the adjoint resolution of Γ by Prop[𝑥]. The right adjoint functor
G ∶ Prop ⟶ Prop[𝑥] is a surjective embedding, resulting in the natural isomorphism:

Prop[𝑥] (A → B)
Prop (Γ , A → B)

This functor preserves the the interpretations of ∧ and ⊤ because they are limits, and
preserves the interpretations of the other propositional connectives as well:

Prop[𝑥] (A , B → C)
≅ Prop (Γ , A , B → C)
≅ Prop (Γ , A → B ⊃ C)
≅ Prop[𝑥] (A → B ⊃ C)

Prop[𝑥] (A → C) × Prop[𝑥] (B → C)
≅ Prop (Γ , A → C) × Prop (Γ , B → C)
≅ Prop ((Γ ∧ A) ∨ (Γ ∧ B) → C)
≅ Prop (Γ , A ∨ B → C)
≅ Prop[𝑥] (A ∨ B → C)

Prop[𝑥] (0 → A)
≅ Prop (Γ , 0 → A)
≅ Prop (0 , Γ → A)
≅ Prop (0 → Γ ⊃ A)
= {¡ ⊃ }

Moving to the polynomial category Prop[𝑥] effectively turns a context Γ into an axiom
of the logical system and turns derivations with Γ as global context into proofs.

Chapter 7

Categorical Sequent Calculus

We continue the examination of intuitionistic first-order proof theory from a categorical
perspective based on the adjunctions governing the connectives. In this chapter we interpret
a system of sequent calculus in hyperdoctrines, much as we did with natural deduction in
chapter 5. Having a categorical description of sequent calculus will allow us to apply search
strategies for constructing sequent proofs in the categorical setting of a hyperdoctrine to
search the free interpretation of a theory for a derivation of a goal. As in the case of natural
deduction, the adjoint-theoretic descriptions of the quantifiers will allow us to decompose
their non-invertible sequent rules into a purely logical part and a substitution. Based on
this decomposition, we present a formulation of sequent calculus in which derivations are
indexed by typing contexts and where these typing contexts and reindexings between them
have first-class status. This permits the interpretation of the logic variables and generic
parameters found in logic programming and allows us to defer the choice of quantifier
instantiations during proof search.

An issue that arises in choosing a system of sequent calculus to which to try to give a
categorical interpretation is exemplified by the engineer’s old gripe about technical stan-
dards: the nice thing about them is that there are so many to choose from. Numerous
sequent calculi have been developed, even just for intuitionistic first-order logic, each de-
signed to have some particular desirable property; for example, close relationship to natural
deduction, freedom from certain structural rules, freedom from certain adjacent inference
permutations, and so on. As the sophistication of such a calculus increases, it becomes
more difficult to relate it back to natural deduction, and thus to show that it captures
the familiar notion of intuitionistic inference, or to give it constructive meaning through a
calculus of realizers. Here we will investigate a particularly simple system of intuitionistic
first-order sequent calculus, close to Gentzen’s original system, “NJ”. In chapter 8 we will
impose further constraints on the system through the additional layer of a search strategy,
which limits where and how the inference rules may be applied.

86

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 87

7.1 Intuitionistic Sequent Calculus

An intuitionistic logical sequent is an expression of the form, “Γ ⟹ A”, where A is a logical
proposition called the “goal” or succedent, and Γ is a collection of logical propositions
called the “context”, “program”, or antecedent. Sequent calculus was originally developed
by Gentzen as a meta-calculus for the theory of natural deduction. In this regard, the
symbol “⟹” can be understood to represent inference. Thus the sequent Γ ⟹ A expresses
the judgement that A is a logical consequence of Γ, and a sequent calculus proof of such
a sequent represents a natural deduction derivation witnessing the claim. As described in
chapter 2, for typed logics a context consists of a propositional context, containing logical
assumptions, as well as a typing context, containing the typed free term variables in scope.
We represent this with the notation, “Φ | Γ ⟹ A”, where Φ is the typing context.

The inference rules of sequent calculus are like those of natural deduction in that
they may have multiple (including possibly zero) premises, but always a single conclusion.
However, the premises and conclusion are now sequents rather than propositions.1 These
rules come in two sorts, structural and logical, which determine the properties of logical
contexts and connectives, respectively. These rules are depicted in figure 7.1.

If we consider contexts to be multisets, that is, unordered collections with multiplicity,
then we have four structural rules:

contraction (𝑐L) , which says that the (non-zero) multiplicity of assumptions is irrelevant,

weakening (𝑤L) , which says that an inference remains valid under added assumptions,

cut (𝑐𝑢𝑡) , which describes how inferences may be composed,

initial sequent axiom (𝑖𝑛𝑖𝑡) , which says that we may infer that which we assume.

If contexts are instead taken to be sets, then contraction of course becomes superfluous.
In the case of sequent proofs, weakening and cut are admissible. For weakening this is
quite obvious since we may push weakenings up to the leaves of a derivation, where they are
absorbed by the axioms. The admissibility of cut is much more subtle, its proof constituting
Gentzen’s celebrated Hauptsatz [Gen35]. However, for sequent derivations with assumptions,
weakening and cut must be retained. A sequent that contains its succedent within its
antecedent is called an initial sequent.

When read from premises to conclusion, the logical rules of sequent calculus are all
introduction rules, which act either on the right (succedent) or on the left (antecedent)
of a sequent. Each logical rule acts on a single proposition in its conclusion, called the

1 There remain also typing judgement premises in quantifier rules.

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 88

Structural Rules:

, , ⟹
, ⟹

⟹
, ⟹

⟹ , ⟹
⟹ , ⟹

Logical Rules:

right left

⟹ no rule for

no rule for , ⟹

⟹ ⟹
⟹ ∧ ∧

, , ⟹
, ∧ ⟹ ∧

⟹
⟹ ∨ ∨ ⟹

⟹ ∨ ∨ , ⟹ , ⟹
, ∨ ⟹ ∨

, ⟹
⟹ ⊃ ⊃

⟹ , ⟹
, ⊃ ⟹ ⊃

⟹ [↦]
⟹ ∀ ∶ . ∀

∶ , [↦] ⟹
, ∀ ∶ . ⟹ ∀

∶ ⟹ [↦]
⟹ ∃ ∶ . ∃

, [↦] ⟹
, ∃ ∶ . ⟹ ∃

𝑒 not free in the conclusion

Figure 7.1: Inference rules for intuitionistic first-order sequent calculus

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 89

principal formula, and one or more propositions in each premise, called active formulas.
The remaining propositions that occur in a rule are passive formulas, and are parametric.
Like in natural deduction, the term “𝑒” occurring in the quantifier rules ∀R and ∃L is an
eigenvariable, and the term “𝑡” in ∀L and ∃R is a representative, respectively, witness of its
type.

There is a close relationship between the system of sequent calculus presented here
and that of natural deduction in figure 2.1. The correspondence is given the Prawitz
translation, which describes a function from cut-free sequent proofs to normal natural
deduction derivations [Pra65]. This function is surjective (though not injective) and has
been extended to sequent proofs with cuts, where cut elimination in sequent calculus is
related to normalization in natural deduction [Zuc74; Pot77].

The basic idea of the translation is as follows. A sequent calculus logical right rule cor-
responds to appending an instance of the corresponding natural deduction introduction rule
at the root of a derivation subtree. The sequent calculus logical left rules are more nuanced.
Left rules for most right connectives correspond to appending instances of the correspond-
ing natural deduction elimination rules at the leaves of a natural deduction subtree. Left
rules for left connectives correspond to appending instances of the corresponding natural
deduction elimination rules at the root of a natural deduction subtree; this is due to the
single-conclusion nature of the inference rules. The left rule for implication corresponds to
taking the derivation corresponding to an instance of ⊃− and both precomposing it with a
derivation from the context and postcomposing it with a derivation to the goal. This has
the effect of splitting a natural deduction subtree into two sequential parts. For a more
detailed treatment of the translation, we refer the reader to [Gal93], [TS00], or the original
[Pra65].

7.2 Sequent Calculus in Hyperdoctrines

Rather than detailing the interpretation of sequent calculus in natural deduction via the
Prawitz translation, we present an interpretation of sequent calculus in the categorical
semantics of hyperdoctrines. This allows us to see a sequent calculus proof as instructions
for discovering – or constructing, depending on your point of view – an arrow of a given
hom set in the fibers. Recall that propositions and propositional contexts are interpreted
by objects in the fibers of a hyperdoctrine over the interpretation of their typing contexts.

Definition 7.2.1 (interpretation of a sequent) The interpretation of a sequent, Φ | Γ ⟹ A,
in a hyperdoctrine P is the hom set P(⟦Φ⟧) (⟦Γ⟧ → ⟦A⟧).

The interpretations of the structural rules follow from the interpretation of contexts as
finite products.

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 90

Definition 7.2.2 (interpretation of the structural rules)

• The structural rule of contraction is interpreted as the precomposition of a diagonal
arrow in context:

....⟦ , ⟧ ..⟦ , , ⟧ ..⟦ ⟧.× ∆ . ⟦𝒟⟧

• The structural rule of weakening is interpreted as the precomposition of a complement-
projection:

....⟦ , ⟧ ..⟦ ⟧ ..⟦ ⟧.. ⟦𝒟⟧

• The structural rule of cut is interpreted as the composition:

....⟦ ⟧ ..⟦ , ⟧ ..⟦ ⟧.⟨ , ⟦𝒟 ⟧⟩ . ⟦𝒟 ⟧

• The initial sequent axiom is interpreted as the projection:

....⟦ , ⟧ ..⟦ ⟧.

Notice that in the context comonad, these are simply the arrows ∆ and !, and the Kleisli
composition and identity, respectively. Because propositional contexts are considered to
be unordered, we will leave tacit the associating and commuting isomorphisms on their
interpretations.

We now turn our attention to the logical rules of sequent calculus. We can use the
adjunctions interpreting the connectives to interpret these rules in a manner similar to the
case for the inference rules of natural deduction described in theorem 5.0.1. As we did there,
we will assume that the interpretations are free and suppress the interpretation brackets for
readability; though again, the result holds in any hyperdoctrine interpretation.

• The right rules of right connectives and left rules of left connectives correspond exactly
to their introduction, respectively, elimination rules in natural deduction. For right
connectives, they are interpreted as the adjoint complement operation −♭, and for
left connectives, as the adjoint complement operation −♯ precomposed with a context
distributing isomorphism. We call these rules eigenrules.

• The right rules of left connectives are interpreted as the postcomposition of the unit
component of the corresponding adjunction. Dually, we obtain moral left rules of
right connectives as the precomposition of the counit component “in context” – that

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 91

is, using its context comonad image in order to propagate the ambient propositional
context. However, we will see that proof-theoretic considerations in the cases of con-
junction and implication lead to deviation from this simple symmetry. We call these
rules anderrules. Just as in natural deduction, the adjoint-theoretic anderrules for
quantifiers decompose their Gentzen counterparts into a purely logical part and a
substitution.

We now explain this in the case of each connective.

Conjunction

The adjunction for conjunction is summarized in diagram 5.1. It has the bijection of hom
sets:

Prop × Prop (∆ → (,))
Prop (→ ∧(,))

♭

Read as an inference rule of sequent calculus, this becomes:
(,) ⟹ (,)

⟹ ∧ ∧ ⋆

Using the fact that an arrow in a product of categories is the pair consisting of an arrow in
each, we may write each sequent of the pair in the premise separately to get the given rule.

The counit of this adjunction is the ordered pair of projections, (𝑓𝑠𝑡 , 𝑠𝑛𝑑). Given any
derivations 𝒟 ∶ Prop (Γ , A → C) and 𝒟 ∶ Prop (Γ , B → D), we may obtain a deriva-
tion in the hom set Prop × Prop ((Γ , Γ) , ∆(A ∧ B) → (C , D)) by precomposing the counit
component in context as shown:

..

..Prop × Prop ∶ .., ∧ .., ∧ .

. .., .., .

.

.

,

.

,

.

𝒟

.

𝒟

.

(,) ,

where (Γ , Γ) , ε is the context comonad image of ε. This construction corresponds to the
sequent rule:

(,) , (,) ⟹ (,)
(,) , (∧ , ∧) ⟹ (,) ∧ ⋆

By separating both pairs, this can be rewritten as the pair of rules:
, ⟹ , ⟹

, ∧ ⟹ and
, ⟹ , ⟹

, ∧ ⟹

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 92

Instantiating these at D ≔ B, respectively, C ≔ A, we obtain the following rules, ∧L and
∧L :

, ⟹ , ⟹
, ∧ ⟹ and

, ⟹ , ⟹
, ∧ ⟹

This pair of rules was used for conjunction on the left in Gentzen’s original system of sequent
calculus, LJ, and has a pleasing symmetry with the ∨R rules to follow. However, due to the
nature of contexts as collections of premises interpreted conjunctively, these two rules have
a common weakening to the given single rule, which has the advantage of being invertible.
The equivalence is given by:

, ⟹
, , ⟹
, ∧ ⟹ ∧

, ⟹
, , ⟹
, ∧ ⟹ ∧

, ⟹
, ∧ ⟹ ∧ , , ⟹

, , ∧ ⟹
∧

, ∧ ⟹

Disjunction

The case for disjunction is nearly dual to that for conjunction, except as we have already seen
in section 5.2, the presence of an ambient context requires the mediation of the distributive
law (lemma 3.3.2). With this, we have the bijection of hom sets:

Prop × Prop (∆ , (,) → ∆)
Prop (, ∨(,) →)

Read as an inference rule of sequent calculus, this becomes:

(,) , (,) ⟹ (,)
, ∨ ⟹ ∨ ⋆

By separating the pair of sequents in the premise we obtain the given rule.

The unit of this adjunction is the ordered pair of coprojections, (𝑖𝑛𝑙 , 𝑖𝑛𝑟). Given any
derivations 𝒟 ∶ Prop (Γ → A) and 𝒟 ∶ Prop (Γ → B), we may obtain a derivation in
the hom set Prop × Prop ((Γ , Γ) → ∆(A ∨ B)) by postcomposing the unit component as
shown:

..

..Prop × Prop ∶

.

. ..∨ ..∨ .

.

𝒟

.

𝒟

...

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 93

This construction corresponds to the sequent rule:
(,) ⟹ (,)

(,) ⟹ (∨ , ∨) ∨ ⋆

By separating both pairs, this can be rewritten as the pair of rules:
⟹ ⟹

⟹ ∨ and
⟹ ⟹

⟹ ∨

Instantiating at Γ ≔ B, respectively Γ ≔ A, we get the given rules ∨R and ∨R :

⟹ ⟹
⟹ ∨ and

⟹ ⟹
⟹ ∨

Truth

The adjunction for truth is summarized in diagram 5.3. It has the bijection of hom sets:
𝟙 (∗ → ∗)

Prop (→)
♭

Read as an inference rule of sequent calculus, this becomes:
∗ ⟹ ∗
⟹

⋆

The premise of this rule is an initial sequent. Dispatching it yields the given rule.

Truth has an adjoint-theoretic moral left rule arising from composition with the counit
as well. However, it resides in the category 𝟙, where it allows the transformation of the
identity sequent into itself – hardly much use.

Falsehood

The case for falsehood is dual to that for truth since as we have seen in section 5.4, context
distribution is trivial in the category 𝟙. Here we have the bijection of hom sets:

𝟙 (∗ → ∗)
Prop (, →)

Read as an inference rule of sequent calculus, this becomes:
∗ ⟹ ∗
, ⟹

⋆

The premise is again an initial sequent. Dispatching it yields the given rule.

It is interesting to note that the rule for using ⊥ has historically been presented as a
right rule, representing the notion of proof by contradiction or “reductio ad absurdum”,

⟹
⟹

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 94

even though this presentation doesn’t fit the pattern of naming rules for the connective that
is introduced into the conclusion of the rule, on the left or right, as the case may be. In any
event, the two rules are equivalent:

⟹ , ⟹
⟹

, ⟹
, ⟹

Falsehood has another, moral, right rule as well, but alas it is just as useless as truth’s
moral left rule.

Implication

The adjunction for implication is summarized in diagram 5.5. It has the bijection of hom
sets:

Prop (, →)
Prop (→ ⊃)

♭

Reading this as an inference of sequent calculus yields the given rule.

The counit of this adjunction is the evaluation map, 𝑒𝑣𝑎𝑙. Given any derivation 𝒟 ∶
Γ , B ⟶ C, we may obtain a derivation in Γ , A ⊃ B , A ⟶ C by precomposing the counit
component in context as shown:

..

..Prop ∶ .., ⊃ , .

. .., .

. .. .

.

,

.

𝒟

.

,

This corresponds to the sequent calculus inference rule:
, ⟹

, ⊃ , ⟹ ⊃ ⋆

For meta-theoretic, perhaps even aesthetic, reasons, the logical rules of sequent calculus
each act with respect to a single principal formula having the principal connective named
in the rule. The presence of A in the antecedent of the conclusion of this rule violates this
pattern. Instead, the given rule requires A to be derived from Γ, which we can describe

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 95

categorically (up to a tacit context permutation) as:

..

..Prop ∶ .., ⊃ .

. .., , ⊃ ..

. .., .

. .. .

.

⟨ , 𝒟 ⟩ ,

., .

𝒟

.

𝒟 ,

.
,

Despite this stylistic difference, the two rules are equivalent:
⟹

, ⊃ ⟹
, ⟹

, ⊃ , ⟹ ⊃ ⋆

, ⊃ ⟹
, ⟹

, ⟹
, , ⟹

, ⊃ , ⟹ ⊃

In spite of this equivalence the given rule for ⊃L warrants attention because it behaves
like 𝑐𝑢𝑡 in that it essentially composes its two argument derivations sequentially. However,
unlike 𝑐𝑢𝑡, ⊃L composes them at a hom set rather than at an object. Indeed, by the inference
rules for implication, 𝑐𝑢𝑡 is equivalent to the following identity rule for implication:

, ⊃ ⟹
⟹

⊃

which is therefore also admissible, and perhaps even more intuitively so than 𝑐𝑢𝑡. We can
interpret this rule as:

....≅ , .., ⊃ ..., . 𝒟

The equivalence is given by,

⟹ , ⟹
, ⊃ ⟹ ⊃

⟹
⊃

, ⟹
⟹ ⊃ ⊃ , ⊃ ⟹

⟹

Will see in the sequel that imposing constraints on the application of the ⊃L rule plays a
crucial role in defining strategies for proof search.

Universal Quantification

The adjunction for universal quantification is summarized in diagram 5.6. It has the bijec-
tion of hom sets:

Prop(, ∶) (̂∗ →)
Prop() (→ ∀ ∶ .)

♭

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 96

Read as an inference rule of sequent calculus, this becomes:
, ∶ | ⟹
| ⟹ ∀ ∶ . ∀ ⋆

(7.1)

The explicit typing contexts convey exactly the same information as the side-condition of
the given rule, with the context variable 𝑥 acting as the eigenvariable.

For any universally quantified proposition in context, Φ | ∀𝑥 ∶ X . A prop, the component
of the counit of the adjunction for ∀ is an arrow,

ε∀ (A) ∶ Prop(Φ , 𝑥 ∶ X) (�̂�∗(∀𝑥 ∶ X . A) → A)

As in the case of the natural deduction rule ∀−, we reindex the counit component in context
by the single substitution determined by a term to form the sequent left rule.

Given any term in context Φ | 𝑡 ∶ X and derivation 𝒟 ∶ Prop(Φ) (Γ , A[𝑥↦𝑡] → B), we
may reindex the component of the counit in context by the single substitution [𝑥↦𝑡] and
precompose the resulting arrow with 𝒟 to obtain a derivation in Prop(Φ) (Γ , ∀𝑥 ∶ X . A → B)
as shown:

..

.., ∀ ∶ . ..̂∗ , ̂∗(∀ ∶ .) .., ∀ ∶ .

. ..̂∗ , .., [↦]

.. ..̂∗ ..

.. .., ∶ ..

.

̂

.

[↦]

..

, ∀ ()

.

, (∀ ())[↦]

. 𝒟
(7.2)

This construction corresponds to the given left rule for universal quantification with an
explicit typing context:

⟹ ∶ | , [↦] ⟹
| , ∀ ∶ . ⟹ ∀ ⋆

The premise on the left represents the judgement Φ | 𝑡 ∶ X in sequent notation. This premise
is to be proved by a derivation in the type theory.

Existential Quantification

The case for existential quantification is nearly dual to that for universal quantification,
except as we have already seen in section 5.7, the presence of an ambient propositional

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 97

context requires the mediation of Frobenius reciprocity (lemma 3.3.3). With this, we have
the bijection of hom sets:

Prop(, ∶) (̂∗ , → ̂∗)
Prop() (, ∃ ∶ . →)

Read as an inference rule of sequent calculus, this becomes:
, ∶ | , ⟹
| , ∃ ∶ . ⟹ ∃ ⋆

(7.3)

Again, the explicit typing contexts convey exactly the information of the side-condition of
the given rule.

For any existentially quantified proposition in context Φ | ∃𝑥 ∶ X . A prop, the component
of the unit of the adjunction for ∃ is an arrow,

η∃ (A) ∶ Prop(Φ , 𝑥 ∶ X) (A → �̂�∗(∃𝑥 ∶ X . A))

As in the case of the natural deduction rule ∃+, we reindex the unit component by the
single substitution determined by a term to form the sequent right rule.

Given any term in context Φ | 𝑡 ∶ X and derivation 𝒟 ∶ Prop(Φ) (Γ → A[𝑥↦𝑡]), we may
reindex the component of the unit by the single substitution [𝑥↦𝑡] and postcompose the
resulting arrow with 𝒟 to obtain a derivation in Prop(Φ) (Γ → ∃𝑥 ∶ X . A) as shown:

..

.. ..̂∗() ..

.[↦]

..∃ ∶ . ..̂∗(∃ ∶ .) ..∃ ∶ .

.. .., ∶ ..

.

̂

.

[↦]

.. ∃ (). (∃ ())[↦].

𝒟

(7.4)

This construction corresponds to the given right rule for existential quantification with an
explicit typing context:

⟹ ∶ | ⟹ [↦]
| ⟹ ∃ ∶ . ∃ ⋆

7.3 An Indexed Sequent Calculus

In contrast to natural deduction derivations, sequent calculus derivations may be con-
structed unilaterally, beginning from the root and working up to the leaves. This property

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 98

makes sequent systems well-suited to the task of proof search. Another property that makes
a derivation system good for proof search is the subformula property, which demands
that all formulas appearing in the premises of an inference rule be subformulas of those
appearing in its conclusion.2 The reason that this property is so desirable is the way in
which it helps bound the search space: it ensures that all the formulas we must consider are
sitting right in front of us, so that we never have to guess one out of thin air.

A quick scan of figure 7.1 reveals that all of the rules of cut-free sequent calculus satisfy
the subformula property – except for ∀L and ∃R, where the representative or witness term
occurs only in the premises.3 This raises the question of how, in general, we are to find
such a term. The categorical perspective we have been exploring can shed some light on
this matter.

The key insight is that in diagrams (7.2) and (7.4), the operation of reindexing by the
single omission �̂� and composing with the counit or unit component need not be immediately
followed by the operation reindexing by the single substitution [𝑥↦𝑡] and composing with
𝒟. Rather, we may be able to linger in the fiber Prop(Φ , 𝑥 ∶ X), continuing the derivation
there until such time as it becomes clear which term to choose.

We illustrate this point with an instructive example. Suppose that we wish to prove the
following sequent in a language with no function symbols:

∃𝑦 ∶ Y . ∀𝑢 ∶ X . R(𝑢 , 𝑦) ⟹ ∀𝑥 ∶ X . ∃𝑣 ∶ Y . R(𝑥 , 𝑣)

Intuitively, this expresses the inference, “if there is something to which everything is related,
then everything is related to something”. The principal connectives of the succedent and
antecedent are respectively right and left connectives, so we may fearlessly apply their
respective invertible eigenrules, leading to an equivalent goal sequent:

𝑥 ∶ X , 𝑦 ∶ Y | ∀𝑢 ∶ X . R(𝑢 , 𝑦) ⟹ ∃𝑣 ∶ Y . R(𝑥 , 𝑣)

Suppose that we next reindex by �̂� and consider the unit component η∃ there:

𝑥 ∶ X , 𝑦 ∶ Y , 𝑣 ∶ Y | R(𝑥 , 𝑣) ⟹ ∃𝑣 ∶ Y . R(𝑥 , 𝑣)

But before choosing a substitution for 𝑣, we first reindex by �̂� and consider the counit
component ε∀ there:

𝑥 ∶ X , 𝑦 ∶ Y , 𝑣 ∶ Y , 𝑢 ∶ X | ∀𝑢 ∶ X . R(𝑢 , 𝑦) ⟹ R(𝑢 , 𝑦)
2 There is a closely-related notion of subformula property for natural deduction derivations where the

global assumptions are considered as well [Pra65].
3 Many authors define the subformula property in such a way as to allow these rules to satisfy it as

well by considering any instance of a quantified proposition to be among its subformulas. This seems rather
disingenuous to us since the term cannot be said to occur in any meaningful way in the conclusions of
these rules.

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 99

..

..∅ ..∃ ∶ . ∀ ∶ . (,)∀ ∶ . ∃ ∶ . (,)

..∶ ..∃ ∶ . ∀ ∶ . (,)∃ ∶ . (,)

..∶ , ∶ ..∀ ∶ . (,)∃ ∶ . (,)

..∶ , ∶ , ∶ ..∀ ∶ . (,) . ..(,) ..∃ ∶ . (,)

..∶ , ∶ , ∶ , ∶ ..∀ ∶ . (,) ..(,) ..(,) ..∃ ∶ . (,)

..∶ , ∶ , ∶ ..∀ ∶ . (,) ..(,) ..(,) ..∃ ∶ . (,)

..∶ , ∶ ..∀ ∶ . (,) ..(,) ..(,) ..∃ ∶ . (,)

.

∀

.

̂

.

∃

.

̂

.
∃

.
̂

.

∀

.

̂

..

[↦]

..

[↦]

. ∃.

∀

..

Figure 7.2: Categorical operational semantics of a derivation

We could then finish the proof if we could find substitutions for 𝑢 and 𝑣 in the context
𝑥 ∶ X , 𝑦 ∶ Y that would unify R(𝑢 , 𝑦) with R(𝑥 , 𝑣). Of course [𝑢↦𝑥] and [𝑣↦𝑦] are the only
possibilities. Applying them allows us to build the derivation that we seek. This categorical
operational semantics is summarized in figure 7.2, where we have underlined the variables
for which we need to provide substitutions, given rule name annotations in anticipation of
the coming definitions and drawn the fibers horizontally in order to fit on the page.

This suggests that we may refine the quantifier anderrules so that they don’t incorporate
a choice of representative, respectively, witness. In diagrams (7.2) and (7.4), by simply
translating composition with the respective counit in context or unit into a sequent calculus
inference rule, we obtain:

, ∶ | ̂∗ , ⟹ ̂∗

, ∶ | ̂∗ , ̂∗(∀ ∶ .) ⟹ ̂∗ and
, ∶ | ̂∗ ⟹

, ∶ | ̂∗ ⟹ ̂∗(∃ ∶ .)

What we want is substitution instances of these rules, but we don’t yet know which instances.
Notice that in the conclusions of these rules, the choice of substituting term does not matter,
since 𝑥 is a dummy variable throughout. Regardless of term that is chosen, the conclusions
will be respectively,

Φ | Γ , ∀ 𝑥 ∶ X . A ⟹ B and Φ | Γ ⟹ ∃𝑥 ∶ X . A

Therefore, we reformulate the rules to use these conclusions, but in order to do so we must
add a premise witnessing the existence of some term of type X in context Φ. We also adopt
the versions of the quantifier eigenrules with explicit contexts given in (7.1) and (7.3).

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 100

Definition 7.3.1 (Indexed sequent quantifier rules)

, ∶ | ⟹
| ⟹ ∀ ∶ . ∀

⟹ ∶ , ∶ | , [↦] ⟹
| , ∀ ∶ . ⟹ ∀

, ∶ | , ⟹
| , ∃ ∶ . ⟹ ∃

⟹ ∶ , ∶ | ⟹ [↦]
| ⟹ ∃ ∶ . ∃

The premise Φ ⟹ 𝑥 ∶ X of the quantifier anderrules will itself be the conclusion of
a derivation in the type theory. On its own, this premise would be unprovable because,
since Φ , 𝑥 ∶ X constitutes a valid context, we know that 𝑥 ∉ Φ. This is why we apply
the underlining annotation to the variable “𝑥”: to remind ourselves that we are obliged
to eventually provide a substitution for it by a term in context Φ in order to obtain a
derivation in the context Φ. For this reason we will call context variables arising from
quantifier anderrules andervariables or obligation variables. In the sequel we will see
that they interpret the logic variables of logic programming.

It is important to understand that in the categorical semantics there is no inherent
difference between generic variables and obligation variables; both are interpreted as (typing)
context variables. The only distinction is in how such a variable comes to be introduced into a
local scope. If this introduction is the result of a quantifier eigenrule then the variable should
be thought of as generic and should not be substituted for, precisely because the eigenrule
represents a bijection of derivation arrows between its conclusion and premise sequents. In
contrast, if the introduction is the result of a quantifier anderrule, then the variable should
be thought of as an obligation variable, because in order to obtain a derivation arrow residing
in the original fiber a substitution must eventually be provided for it. In other words, the
different treatment of eigenvariables and andervariables arises not from what they are, but
rather from what they tell us about where we are (i.e. in which fiber) in relation to where
we want to be.

This brings us to the question of how to represent substitutions in derivations. In the
most direct correspondence to the indexed categorical semantics, we could simply take a
derivation and rewrite it by applying the substitution at each node of the tree. However,
this would be intolerably verbose as it would require copying the tree each time a substi-
tution is performed. Instead, we will present a more compact notation. We will represent
substitutions using a pair of inference rules, one for the type theory and one for the logic:

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 101

Definition 7.3.2 (indexed sequent substitution rules)

⟹ [↦] ∶
⟹ ∶

[↦]
| [↦] ⟹ [↦]
, ∶ | ⟹

[↦]

We usually suppress the word “𝑠𝑢𝑏” in order to save space. These rules may at first
seem counterintuitive because they are contravariant to the normal direction of substitution.
This is because they represent the act of reindexing the entire derivation below them by the
given substitution. In order to reindex a derivation by a substitution, the same substitution
must be applied to the entire frontier. As explained in the preceding discussion, substitu-
tions should be made only for obligation variables, which we indicate with the underlining
annotation. Without this restriction, substitution would allow the inference of a sequent
from one of its instances, which would be unsound.

The indexed quantifier anderrules and substitution rules permit the decomposition of
the rules ∀L and ∃R in table 7.1 in the manner suggested by the categorical semantics
depicted in diagrams (7.2) and (7.4). Intuitively, the creation of an obligation variable by
an indexed quantifier anderrule represents deferring the selection of a term instance, while
the eventual elimination of that obligation variable by substitution represents making the
deferred choice.

Definition 7.3.3 (indexed sequent calculus) We will call the sequent system with the
quantifier rules of definition 7.3.1 and substitution rules of definition 7.3.2 the indexed
sequent calculus. The inference rules for the propositional connectives do not involve the
typing context, and remain the same as in table 7.1.

Proposition 7.3.4 (equivalence of ordinary and indexed sequent calculus) The indexed
sequent calculus (“𝑖”) is equivalent to the sequent calculus presented in table 7.1 – hence-
forth, “ordinary sequent calculus” (“𝑜”) – in the sense that the same sequents are provable
in each.

Proof. We have already seen that the ordinary quantifier eigenrules are equivalent to their
indexed counterparts, where the information carried in the side conditions of the ordinary
rules corresponds precisely to that in the typing contexts of the indexed ones:

⟹ [↦]
⟹ ∀ ∶ . ∀ ⟺

, ∶ | ⟹
| ⟹ ∀ ∶ .

∀

, [↦] ⟹
, ∃ ∶ . ⟹ ∃ ⟺

, ∶ | , ⟹
| , ∃ ∶ . ⟹

∃

does not occur in the conclusion

(7.5)

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 102

It is also the case that the ordinary quantifier anderrules are equivalent to their indexed
counterparts followed immediately by a reindexing:

∶ , [↦] ⟹
, ∀ ∶ . ⟹

∀
⟺

⟹ ∶
⟹ ∶

[↦]
| , [↦] ⟹

, ∶ | , [↦] ⟹
[↦]

| , ∀ ∶ . ⟹
∀

∶ ⟹ [↦]
⟹ ∃ ∶ .

∃
⟺

⟹ ∶
⟹ ∶

[↦]
| ⟹ [↦]

, ∶ | ⟹ [↦]
[↦]

| ⟹ ∃ ∶ .
∃

(7.6)
So an ordinary sequent derivation is equivalent to an indexed one in which quantifier an-
derrules are followed immediately by substitutions for the generated obligation variables.

Next, recall that reindexing commutes with the propositional connectives because it is a
bicartesian closed functor, and that it commutes with the quantifiers by the Beck-Chevalley
condition. Therefore, we can permute a substitution with any logical inference rule 𝑟,

| [↦] ⟹ [↦]
, ∶ | ⟹

[↦]

, ∶ | ⟹ ⟺

| [↦] ⟹ [↦]
| [↦] ⟹ [↦]
, ∶ | ⟹

[↦]

and similarly for rules with two premises, except of course for the quantifier anderrule
instance that introduces the obligation variable of the substitution, because that variable
does not occur in the context of its conclusion. Finally, we may permute two substitutions
using the substitution lemma (lemma 4.3.5):

| [↦][↦] ⟹ [↦][↦]
, ∶ | [↦] ⟹ [↦]

[↦]

, ∶ , ∶ | ⟹
[↦]

⟺

| [↦][↦] ⟹ [↦][↦]
, ∶ | [↦] ⟹ [↦]

[↦ [↦]]

, ∶ , ∶ | ⟹
[↦]

By induction on derivations, we may permute a substitution down the logical branches of
an indexed proof to the position immediately above the quantifier anderrule that introduces
its obligation variable. Similarly, by the presumed functoriality of substitution in the type
theory, we may permute a substitution down a type theoretic branch to the position imme-
diately above the quantifier anderrule that introduces its obligation variable. In this way,
we can contract the scope of an obligation variable to the single sequent lying between the
quantifier anderrule instance that introduces it and the substitution that eliminates it. By
equivalences (7.5) and (7.6), we thus obtain a derivation in the ordinary sequent system.

Example 7.3.5 In the system of indexed sequent calculus, the proof in figure 7.2 is rep-

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 103

resented by the derivation,

∶ , ∶ ⟹ ∶
∶ , ∶ ⟹ ∶

⋅

∶ , ∶ , ∶ ⟹ ∶
∶ , ∶ , ∶ ⟹ ∶

∶ , ∶ | (,) ⟹ (,)
∶ , ∶ , ∶ | (,) ⟹ (,)

≔ [↦]

∶ , ∶ , ∶ , ∶ | (,) ⟹ (,)
≔ [↦]

∶ , ∶ , ∶ | ∀ ∶ . (,) ⟹ (,)
∀

∶ , ∶ | ∀ ∶ . (,) ⟹ ∃ ∶ . (,)
∃

∶ | ∃ ∶ . ∀ ∶ . (,) ⟹ ∃ ∶ . (,)
∃

∅ | ∃ ∶ . ∀ ∶ . (,) ⟹ ∀ ∶ . ∃ ∶ . (,)
∀

Intuitively, this derivation should be read by beginning at the root and following the
logical branch (on the right), the successful closure of which requires the given substitutions.
The soundness of these substitutions is then verified by using them to close the type-theoretic
branches. Recall that substitutions must be applied in the same order and in all branches
to reindex a derivation. But once a branch contains no obligation variables in positions
where substitutions could be made, further substitutions on that branch can have no effect,
and may be suppressed (e.g. σ in the center branch above). More generally, we may wish
to suppress the writing of substitutions anywhere that they have no effect (e.g. σ in the
left branch above). We may also combine adjacent substitutions into a single simultaneous
substitution, whose well-definedness is guaranteed by the substitution lemma (e.g. σ ≔
σ ⋅ σ).

It is instructive to see what goes wrong when trying to prove the converse sequent, which
is in fact not a theorem.

Example 7.3.6

∅ ⟹ ∶
∅ ⟹ ∶

⋅

∶ , ∶ ⟹ ∶

∶ , ∶ ⟹ ∶

∶ , ∶ | (,) ⟹ (,)
∶ , ∶ , ∶ | (,) ⟹ (,)

≔ [↦]

∶ , ∶ , ∶ , ∶ | (,) ⟹ (,)
≔ [↦]

∶ , ∶ , ∶ | ∃ ∶ . (,) ⟹ (,)
∃

∶ , ∶ | ∀ ∶ . ∃ ∶ . (,) ⟹ (,)
∀

∶ | ∀ ∶ . ∃ ∶ . (,) ⟹ ∀ ∶ . (,)
∀

∅ | ∀ ∶ . ∃ ∶ . (,) ⟹ ∃ ∶ . ∀ ∶ . (,)
∃

What goes wrong is that we cannot close the leftmost branch by proving ∅ ⟹ 𝑣 ∶ Y in
the type theory. Because 𝑣 is not an obligation variable we can’t substitute another term
for it, and because 𝑣 ∉ ∅ we can’t close the branch with an 𝑖𝑛𝑖𝑡, so we are stuck. In the
categorical operational semantics, this corresponds to the fact that the substitution [𝑦↦𝑣]
cannot be performed prior to the application of the inference that brings the variable 𝑣 into
scope. Beginning the derivation with the other anderrule leads to a similar predicament, as
the reader may wish to verify.

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 104

The verbosity of these derivations is in large part due to the bureaucracy of the typing
contexts. These may be inferred up to an initial context of the end-sequent from the rest
of the derivation. Therefore, we give an abbreviated syntax for the calculus in which the
typing contexts are implicit.

Definition 7.3.7 (abbreviated syntax for indexed sequent calculus) The abbreviated syn-
tax has:

propositional connective rules: as in table 7.1.

quantifier rules:

⟹
⟹ ∀ ∶ . ∀ ()

∶ , [↦] ⟹
, ∀ ∶ . ⟹ ∀

∶ ⟹ [↦]
⟹ ∃ ∶ . ∃

, ⟹
, ∃ ∶ . ⟹ ∃ ()

where in each case α-conversion is performed on the bound variable 𝑥 so that it does
not occur free in the conclusion.

substitution rules:

[↦] ∶
∶

[↦]
[↦] ⟹ [↦]

⟹
[↦]

where 𝑥 is an obligation variable, that is, a variable not annotating a quantifier eigen-
rule instance or occurring free in the end-sequent.

eigenvariable axiom:
∶ ()

provided that 𝑥 ∶ X is an eigenvariable in the current context, that is, either a rule
instance ∀R (𝑥) or ∃L (𝑥) occurs in the current branch and in that rule instance 𝑥 has
type X.

This version of the quantifier and substitution rules are just like their more verbose
counterparts of definitions 7.3.1 and 7.3.2, except with an implicit typing context. The
side conditions on the quantifier rules ensure that the implicit typing context remains valid.
The variable annotating the quantifier eigenrules is to indicate that the context is being

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 105

augmented by the eigenvariable, and the new eigenvariable axiom corresponds to the axiom
𝑖𝑛𝑖𝑡 in the type theory, which may be applied only if the eigenvariable actually occurs in the
context. To save space, we will suppress the writing of “𝑠𝑢𝑏” and “𝑒𝑖𝑔𝑒𝑛” in derivations. A
valid abbreviated derivation may be elaborated back into verbose form, up to a parametric
initial context, by reconstructing the explicit typing contexts.

To illustrate the use of the abbreviated syntax, we use it to repeat the derivations of
examples 7.3.5 and 7.3.6.

Example 7.3.8

∶
∶

∶
∶

(,) ⟹ (,)
(,) ⟹ (,)

≔ [↦ , ↦]

∀ ∶ . (,) ⟹ (,) ∀

∀ ∶ . (,) ⟹ ∃ ∶ . (,) ∃

∃ ∶ . ∀ ∶ . (,) ⟹ ∃ ∶ . (,)
∃ ()

∃ ∶ . ∀ ∶ . (,) ⟹ ∀ ∶ . ∃ ∶ . (,)
∀ ()

Example 7.3.9

∶
∶

∶
∶

(,) ⟹ (,)
(,) ⟹ (,)

≔ [↦ , ↦]

∃ ∶ . (,) ⟹ (,)
∃ ()

∀ ∶ . ∃ ∶ . (,) ⟹ (,) ∀

∀ ∶ . ∃ ∶ . (,) ⟹ ∀ ∶ . (,)
∀ ()

∀ ∶ . ∃ ∶ . (,) ⟹ ∃ ∶ . ∀ ∶ . (,) ∃

Here again, the goal 𝑣 ∶ Y cannot be closed since the quantifier eigenrule instance that brings
𝑣 into scope is not in that branch.

7.4 Indexed Sequent Tactics in Coq

As a demonstration of indexed sequent calculus, we have written a small tactic library for
the Coq proof assistant [Coq12; BC04]. Coq is an automated proof verifier and certified
program development environment based on the Calculus of (Co)Inductive Constructions
(CIC) [CH88; CP90]. CIC is a constructive dependent type theory in the style of Martin-Löf
[Mar84] with support for inductive and coinductive definitions. In Coq, every term has a
type, which is in turn itself a term with a type. There is an infinite well-founded hierarchy
of types. Inhabitation of a type by a term is decidable, as is convertibility of terms. Thus
Coq may automatically compute whether a given term belongs to a given type, or whether
two terms of a given type are equivalent. The convertibility relation comprises several sub-
relations, including β- and η-equivalence, as well as relations for unfolding definitions and

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 106

let-bindings, and for performing recursion on inductively defined objects. Coq is able to
compute any of several normal forms of a term. In this way, Coq functions as a program
development environment.

Under the Curry-Howard correspondence, where propositions are treated as types and
their proofs as inhabitant terms, Coq can verify whether a purported proof indeed justifies
a given proposition. To facilitate this process, Coq includes a proof mode, in which the user
may interactively use high-level tactics to transform a goal proposition into a collection of
(hopefully) simpler goals. Once the user has successfully proved a proposition by recur-
sively solving all of the generated subgoals, Coq uses the tactic definitions to automatically
transform the proof tree into a term of CIC inhabiting the type corresponding to the proved
proposition. In this way, Coq functions as an automated proof verifier.

The ability to express strong specifications using dependent types and to include propo-
sitions and their proofs within programs allows for the construction of certified programs,
those where some aspects of their behavior are guaranteed by the program itself. Further,
the ability to write programs within the tactic language allows for the writing of decision
procedures, or more generally, search strategies, to direct an automated search for proofs.

Coq’s embedded tactic language, called “Ltac”, is a functional programming language
with facilities for non-linear pattern matching and backtracking. Coq tactics may also be
written directly in Coq’s implementation language of OCaml, though we did not pursue this
approach. The high-level nature of the Ltac language permits only limited manipulation
of the global derivation state. At any point in time, a derivation may contain multiple
incomplete branches, each ending in an open goal. However, in the interface to Coq only
one such goal may be active at a time, and any tactics applied generally affect only the
active goal. This is problematic from the point of view of our indexed sequent calculus
because the reindexing triggered by a substitution rule must be applied globally, that is, to
all open goals.

Fortunately, Coq provides another feature that we may use to achieve the non-locality we
seek. Coq’s existential variables generalize the logic variables of Prolog. They are typed
meta-variables that may be instantiated to any type-appropriate term, either by the system,
as in Prolog, through unification in the course of proof search; or directly by the user, who
may at any point manually assign them an instantiation. Unlike Prolog, Coq enforces the
constraint that all existential variables must eventually become instantiated in the course
of a proof. This is required for soundness, as example 5.7.1 illustrates. Coq’s existential
variables provide us a means of effecting non-locality across derivation branches. We use
them to represent the obligation variables arising through the application of quantifier
anderrules and Coq automatically keeps track of instantiations that occur across goals.

At the time of this writing, the status of existential variables in Coq is in a state of

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 107

flux. Their implementation began as a high-level wrapper, rather than as a part of Coq’s
proof engine itself. This greatly limited the facilities for manipulating them in the tactic
language. Since Coq version 8.4 (released in 2012) this has changed, but the tactic language
has not yet caught up with these changes.

As a result, our indexed tactic library remains unsatisfactory in some ways. Among them
is that the creation of an existential variable by the application of a quantifier anderrule
does not generate a goal corresponding to the type-theoretic premise of the indexed sequent
rule. This presents no problem if all existential variable becomes instantiated as the result
of substitutions. However, if all logical branches of a derivation are closed but there remain
uninstantiated existential variables, then we must use a command from Coq’s imperative
command language, called “the Vernacular” in order to transform these uninstantiated
existential variables into goals.

Another shortcoming is that dependencies in the local context involving existential vari-
ables are not automatically enforeced as is done for local assumptions (corresponding to
generic context variables and local logical assumptions) and local definitions (let-aliases).
However, we have largely overcome this shortcoming by aliasing the existential variables
with local definitions and managing their context dependencies manually.

Despite these shortcomings, we believe that the indexed sequent tactics provide an in-
teresting proof-of-concept, illustrating how the indexed categorical perspective can be prac-
tically applied in proof assistants.

The indexed sequent tactics for Coq correspond closely to the rules of indexed sequent
calculus presented in definition 7.3.3. Their definitions may be found in appendix B. Here
we illustrate their use by repeating example 7.3.5 in Coq by using these tactics.

Example 7.4.1

Lemma some_a l l __ a l l _ s ome (X Y : Type) (R : X → Y → Prop) :
(∃ y : Y , ∀ u : X , R u y) → (∀ x : X , ∃ v : Y , R x v) .

P roo f .
⊃R . ∀R . ∃L H . ∃R . ∀L H_y . sub u x . sub v y . i n i t H_y_u .

Qed .

As can be seen, Coq supports a Unicode-based notation very close to that commonly
used in mathematics. The statement of the lemma should be immediately comprehensible.
The meaning of the proof, however, may not be so obvious. Coq proof scripts do not
explicitly show the effects of tactic applications on the state of a derivation. In order to
see these, one must step through the derivation within the Coq interactive environment.
However, in this case it should be clear when comparing with the derivation tree in example

CHAPTER 7. CATEGORICAL SEQUENT CALCULUS 108

7.3.5 that this proof contains exactly the same tactics and in exactly the same order (when
read upward from the root) as those in the logical (rightmost) subderivation of the indexed
sequent proof, except for the initial ⊃R, which simply moves the hypothesis into the local
context.

Aside from the already mentioned fact that the tactics for quantifier anderrules do not
generate type-theoretic goals for their obligation variables, the only notable difference to
the indexed sequent calculus as presented in definition 7.3.3 is that the ⊃L rule presents
its two subgoals to the user in right-to-left order. The reason for this is to better fit with
the backward-chaining approach used in logic programming, which we will encounter in the
sequel. With backward-chaining, it is the rightmost branch of ⊃L that is developed first,
potentially triggering reindexings that cause obligation variables to become instantiated.
This aspect is, however, inessential since Coq provides commands allowing the user to
select any open goal for activation.

Chapter 8

Proof Search Strategies

In this chapter we present several logical systems used in logic programming and show how
the computation mechanism for each may be regarded as a complete search strategy in the
indexed sequent calculus presented in section 7.3. By a search strategy we mean a not
necessarily deterministic or complete procedure for choosing an inference to apply to the
frontier of a derivation that is not yet a proof of its end-formula.

We begin with SLD-resolution for Horn logic, the system underlying the programming
language Prolog. Next, we present uniform proof for hereditarily Harrop logic, the first-
order fragment of the system underlying the programming language λ-Prolog. We show
that uniform proof is in fact complete for a syntactically richer language, which we call the
language of constructive sequents.

Finally we present the strategy of focused proof search adapted to intuitionistic first-
order logic. We show that, as in the original formulation for linear logic, intuitionistic
focusing is able to greatly reduce the search space of potential proofs without sacrificing
completeness, a result we have not found in the literature. We close by comparing this
focusing strategy with a sequent system from the literature having a certain very desirable
property related to the input-output semantics of logic programming.

When searching for sequent proofs, we may dispense with the structural rules of weak-
ening and cut. Following custom, we will consider contexts to be sets so that contraction is
also redundant.1 Thus, in the following the only structural rule that we need to consider is
the initial sequent axiom.

1 However, we will sometimes use explicit contractions in order to indicate that a particular member of
the context is being selected for attention.

109

CHAPTER 8. PROOF SEARCH STRATEGIES 110

8.1 SLD-Resolution for Horn Logic

Horn logic is the logical system underlying the logic programming language Prolog. For a
thorough account of Horn logic, Prolog, and its computation mechanism of SLD-resolution,
we refer the reader to [Llo84] or [NM95], and provide here only a brief summary. Our purpose
in this section is to show how SLD-resolution may be interpreted as a search strategy in our
indexed sequent calculus.

In Horn logic a literal is either an atomic proposition (positive literal) or the negation
of an atomic proposition (negative literal). A disjunctive clause (or just “clause”) is the
universal closure of a disjunction of literals:

∀𝑥 ∶ X . A ∨ ⋯ ∨ A
positive literals

∨ ¬B ∨ ⋯ ∨ ¬B
negative literals

A definite clause is one with exactly one positive literal and a negative clause is one with
no positive literals. A Horn clause is either a definite clause or a negative clause.

There is a semi-decision procedure called SLD-resolution for determining the unsat-
isfiability of a finite set of Horn clauses. That is, if such a set is unsatisfiable, then SLD-
resolution will eventually discover this fact; however, if the set is satisfiable, the procedure
may fail to terminate. One might reasonably wonder why we should care about determin-
ing the unsatisfiability of a set of Horn clauses. The answer involves the constructivity of
SLD-resolution and the classical logic that is being assumed.

First, notice that a disjunctive clause is classically equivalent to the universal closure of
an implication of a disjunction of atoms by a conjunction of atoms:

∀𝑥 ∶ X . A ∨ ⋯ ∨ A ∨ ¬B ∨ ⋯ ∨ ¬B
≡ ∀𝑥 ∶ X . (A ∨ ⋯ ∨ A) ∨ ¬(B ∧ ⋯ ∧ B)
≡ ∀𝑥 ∶ X . (B ∧ ⋯ ∧ B) ⊃ (A ∨ ⋯ ∨ A)

We will call a proposition in this form an implicative clause. The disjunction in positive
position is called the clause head and the conjunction in negative position is the clause
tail. Thus a definite disjunctive clause is classically equivalent to an implicative clause with
an atomic head:

∀ 𝑥 ∶ X . (T ∧ ⋯ ∧ T) ⊃ H (8.1)

We will call a proposition of this form a Horn program formula or “Horn program clause”.
A finite set of program formulas is called a program.

Every Horn program is satisfiable, for example, by the Herbrand base, which is the
model-theoretic interpretation consisting of all closed atomic propositions of the language.

CHAPTER 8. PROOF SEARCH STRATEGIES 111

The Herbrand base provides a canonical maximal interpretation for a Horn program. There
exists a canonical minimal interpretation as well, called the least Herbrand model, which
is essentially the inductive closure determined by a set of Horn program clauses.

So if a set of Horn clauses is to be unsatisfiable then it must contain at least one negative
clause. A negative clause is classically equivalent to the negation of the existential closure
of a conjunction of atoms:

∀𝑥 ∶ X . ¬B ∨ ⋯ ∨ ¬B
≡ ∀𝑥 ∶ X . ¬(B ∧ ⋯ ∧ B)
≡ ¬ ∃ 𝑥 ∶ X . B ∧ ⋯ ∧ B

So the negation of a negative clause is classically equivalent to a proposition of the form:

∃ 𝑥 ∶ X . G ∧ ⋯ ∧ G (8.2)

We will call such a proposition a Horn goal formula or “Horn goal”.

Let Γ be a Horn program and G a Horn goal, then:

Γ , ¬G is unsatisfiable
⟺ ⋀(Γ) ∧ ¬G is unsatisfiable
⟺ ¬(⋀(Γ) ∧ ¬G) is valid
⟺ ¬⋀(Γ) ∨ G is valid
⟺ ⋀(Γ) ⊃ G is valid
⟺ Γ ⊨ G

That is, a collection of Horn clauses consisting of a program together with a negative clause
is unsatisfiable just in case the corresponding goal is a logical consequence of the program.
This is a more intuitive and generalizable way to think about Horn logic.

By the completeness theorem for first-order logic, this implies that there is a proof of
G from assumptions Γ. Note that in the form of Horn program and goal formulas, the
propositions of Horn logic do not involve the connective ¬. This makes plausible a result
proved in [Mil89a], that classical and intuitionistic derivability coincide for Horn logic (and
indeed, that both coincide with derivability in minimal logic as well). So by thinking of
Horn logic in terms of Horn program and goal formulas, we may remain within the system
of intuitionistic logic that we have been studying.

Thus by deciding the unsatisfiability of a set of Horn clauses containing a single negative
clause, SLD-resolution is also determining whether a goal is a logical consequence of a pro-
gram. The reader may verify that adding additional negative clauses to the set corresponds

CHAPTER 8. PROOF SEARCH STRATEGIES 112

to determining whether the disjunction of the corresponding goals is a consequence of the
program.

This is certainly useful, but what makes it even more useful, indeed what makes it useful
as a programming language, is the fact that SLD-resolution does this constructively, in the
sense that if a goal formula is a consequence of a program, then it is able to provide witnesses
for the existentially quantified variables.

Although this is not the way it is usually presented, we can think of SLD-resolution as
a simple search strategy in the indexed sequent calculus of section 7.3. In fact, it can be
defined to be a single derived inference rule, applied repeatedly. For Γ a Horn program
containing the clause ∀𝑥 ∶ X . T ∧ ⋯ ∧ T ⊃ H, it is a rule equivalent to:

⋮
∶ ⋯

⋮
∶

⋮
⟹ ⋯

⋮
∶ ⋯

⋮
∶

⋮
⟹ ∧⋯ ∧

() ⟹ ()
⟹

, ∧ ⋯ ∧ ⊃ ⟹ ⊃

, ∀ ∶ . ∧ ⋯ ∧ ⊃ ⟹
∀

⟹ ⋯
⋮

⟹
⟹ ∧⋯ ∧ ∧

⟹ ∃ ∶ . ∧ ⋯ ∧
∃

where a rule “−𝑠” is shorthand for repeated application of the given rule until no longer
applicable, and the context Γ is suppressed in the right branch of the rule ⊃L since we
commit ourselves to using only the clause head in this branch.2

This can in turn be seen as a composition of a right phase:

∶ ⋯ ∶
⟹ ⋯ ⟹

⟹ ∧⋯ ∧ ∧

⟹ ∃ ∶ . ∧ ⋯ ∧
∃

a left phase:

∶ ⋯ ∶
⟹ ∧⋯ ∧ ⟹
, ∧ ⋯ ∧ ⊃ ⟹ ⊃

, ∀ ∶ . ∧ ⋯ ∧ ⊃ ⟹
∀

⟹

and a unification phase:
() ⟹ ()

⟹

where σ is a substitution such that σ(H) = σ(G). This substitution is applied to all branches
of the derivation and the process is repeated. If 𝑛 = 0, that is, if a program clause has an

2 This can either be considered a notational shorthand, or may be achieved literally by repeated weak-
ening.

CHAPTER 8. PROOF SEARCH STRATEGIES 113

empty tail, then we may replace H with the equivalent proposition ⊤ ⊃ H for the sake of
uniformity.3 Note that the ∃R𝑠 step is non-trivial only once, at the the beginning of the
derivation. Note also that this description is not deterministic.

In each iteration, the goal atom G to which the left phase is applied is called the selected
goal. Likewise, the clause in Γ to which the contraction 𝑐L is applied is called the selected
program clause. It turns out that the order in which goals are selected does not affect
provability or the set of possible computed answers (to be discussed momentarily), a result
known as the “independence of computation rule”. However, this is not the case for choosing
program clauses to apply. If a choice of program clause leads to a failed derivation then we
must backtrack to that choice point and try a different choice. We may give up and declare
failure globally only after trying every program clause in each step. But success and failure
are not the only possible outcomes. Some choices may lead to the construction of infinite
derivation trees, a source of potential non-termination.

The substitution σ is called a unifier of H and G . First-order unification is decidable,
that is, there are known algorithms (complete, terminating procedures) that return a most
general unifier if a unifier exists and report failure otherwise. If a proof is found, then the
composition of all substitutions performed in the course of the proof, σ ≔ σ ⋅…⋅σ , is known
as the computed substitution and the sequence of existential witnesses (σ(𝑦) ,⋯ , σ(𝑦))
is called the computed answer. There may be more than one SLD-proof of a Horn sequent,
and different proofs my yield different computed answers. Implementations of Horn logic
such as Prolog generally provide some facility for allowing the user to choose whether to
accept a computed answer or to reject it and have the system continue searching for another
solution.

This ability of SLD-resolution to compute witnesses for the existentially quantified vari-
ables in a goal is what gives Prolog its input-output semantics, which in turn is what
makes it suitable as a programming language. SLD-resolution can be used to find satisfying
substitutions for goals involving inductively-defined predicates. A stereotypical example is
the following.

Example 8.1.1 We may inductively define addition of natural numbers with the two Horn
program clauses:

𝑝𝑙𝑢𝑠_𝑧𝑒𝑟𝑜 ∶ ∀𝑑 ∶ ℕ . ⊤ ⊃ P(𝑧 , 𝑑 , 𝑑)
𝑝𝑙𝑢𝑠_𝑠𝑢𝑐𝑐 ∶ ∀𝑎 , 𝑏 , 𝑐 ∶ ℕ . P(𝑎 , 𝑏 , 𝑐) ⊃ P(𝑠𝑎 , 𝑏 , 𝑠𝑐)

3 This is inessential; not doing so simply requires the addition of a case analysis on the form of the
program clause. But we will soon see the advantage of having all program formulas in a common syntactic
form. In general, the conversion of program formulas to a logically equivalent set in such a form is a process
known as “program elaboration”. Thus we may think of this substitution as Horn program elaboration,
though it is so simple that it usually goes unnamed.

CHAPTER 8. PROOF SEARCH STRATEGIES 114

where 𝑧 ∶ ℕ represents the constant zero and 𝑠 ∶ ℕ ⟶ ℕ represents the successor function.
If Γ is the Horn program {𝑝𝑙𝑢𝑠_𝑧𝑒𝑟𝑜 , 𝑝𝑙𝑢𝑠_𝑠𝑢𝑐𝑐}, then we may effectively compute the
subtraction 3 − 2 by proving the Horn sequent:

Γ ⟹ ∃𝑛 ∶ ℕ . P(𝑛 , 2 , 3)

where we write numeric constants in decimal rather than unary notation for convenience.
An SLD-proof (in this case, the only one) is the following:

≔ [↦ , ↦ , ↦]
≔ [↦ , ↦]

⋮
∶ ℕ
∶ ℕ
∶ ℕ

⋮
∶ ℕ
∶ ℕ

,

⋮
∶ ℕ
∶ ℕ

⋮
∶ ℕ
∶ ℕ

⋮
∶ ℕ
∶ ℕ

⟹

(, ,) ⟹ (, ,)

(, ,) ⟹ (, ,)

, ⊃ (, ,) ⟹ (, ,)
⊃

, ∀ ∶ ℕ . ⊃ (, ,) ⟹ (, ,)
∀

⟹ (, ,)
(_)

⟹ (, ,)

(, ,) ⟹ (, ,)

(, ,) ⟹ (, ,)

, (, ,) ⊃ (, ,) ⟹ (, ,)
⊃

, ∀ , , ∶ ℕ . (, ,) ⊃ (, ,) ⟹ (, ,)
∀

⟹ (, ,)
(_)

⟹ ∃ ∶ ℕ . (, ,)
∃

The elided subderivations in the type theory prove that the numeric constants are indeed
natural numbers, presumably by using the inductive definition of the natural numbers.

The computed substitution is then,

σ ≔ σ ⋅ σ = [𝑛↦1 , 𝑎↦0 , 𝑏↦2 , 𝑐↦2 , 𝑑↦2]

and the computed answer is σ(𝑛) = 1, thus proving that three minus two is indeed one.

The corresponding proof in Coq using the indexed sequent tactics discussed in section
7.4 is as follows.

(* a d d i t i o n , a s an i n d u c t i v e l y d e f i n e d p r e d i c a t e *)
I n d u c t i v e P l u s : n a t → na t → na t → Prop :=

| plus_O : ∀ d : n a t , P l u s O d d
| p lu s_S : ∀ a b c : n a t , P l u s a b c → Plu s (S a) b (S c)

.

Example t h r ee_minus_ two :
∃ n : n a t , P l u s n 2 3 .

P roo f .
(* t h e nex t l i n e j u s t i n t r o d u c e s t h e c o n s t r u c t o r s f o r P l u s i n t o t h e l o c a l c o n t e x t *)
g e n e r a l i z e plus_O ; i n t r o plus_O ; g e n e r a l i z e p lu s_S ; i n t r o p lu s_S .

CHAPTER 8. PROOF SEARCH STRATEGIES 115

∃R . ∀Ls p lu s_S . ⊃L p lus_S_a_b_c .
- sub n (S a) . sub b 2 . sub c 2 . i n i t p lus_S_a_b_c ’ .
- ∀Ls plus_O . sub a 0 . sub d 2 . i n i t plus_O_d .

Qed .

We should mention that like Prolog, Coq is able to prove this type of simple theorem
automatically.

By convention, all quantifiers are suppressed from the concrete syntax of Horn logic.
This is unambiguous since both program and goal formulas are closed and only universal
quantifiers are permitted to occur within Horn programs and only existential quantifiers are
permitted to occur in Horn goals. Consequently, only anderrules of quantifiers will occur
in the course of a derivation and all typing context variables that occur will be obligation
variables, which in logic programming are called logic variables.

8.2 Uniform Proof for Hereditarily Harrop Logic

Essentially what we have done in the last section is to begin with a logical system (Horn
logic) and describe a proof search strategy that is complete for it (SLD-resolution). One
could just as well go the other way around by beginning with a proof search strategy and
trying to find logical systems for which it is complete. This is what was done in a series
of articles by Dale Miller and his collaborators, culminating in [Mil+91]. Their motivation
was to generalize SLD-resolution to more expressive logics that could be used to give a
purely logical interpretation to programming features such as module abstraction and local
parameters. These investigations led to the development of a number of logic programming
languages, notably λ-Prolog.

The strategy they investigated is a very simple one: given any sequent, if the succedent
is not atomic then apply a sequent right rule corresponding to its principal connective.
Miller has named this strategy uniform proof . Uniform proof has the property of being
goal-directed, which is claimed to capture an intuitive notion of computation.4 In [Mil+91],
the authors decline to specify a course of action for atomic succedents but note that an
obvious choice is backward-chaining (to be discussed shortly), which is also goal-directed.
For further details about hereditarily Harrop logic and uniform proof, consult [Mil89a],
[Mil+91], [Nad93] and [DP94]. Our purpose in this section is to characterize uniform proof
with backward-chaining on atoms as a complete indexed sequent search strategy for the
system of hereditarily Harrop logic.

4 Though, we feel inclined to point out, only one out of many; at least to our mind (intuitiveness being
in the mind of the beholder).

CHAPTER 8. PROOF SEARCH STRATEGIES 116

In uniform proof search, the connectives are given computational meaning by interpreting
them as search instructions. The notation “Γ ⊢ A” expresses the judgement that there
exists a uniform proof of the inference Γ ⊢ A.5

Definition 8.2.1 (connectives as search instructions) In uniform proof , the principal con-
nective of a proposition is interpreted as a search instruction by inverting its sequent
calculus right rules, as follows:

SUCCESS :
Γ ⊢ ⊤ always

FAILURE :
Γ ⊢ ⊥ never

BOTH :
Γ ⊢ A ∧ B iff Γ ⊢ A and Γ ⊢ B

EITHER :
Γ ⊢ A ∨ B iff Γ ⊢ A or Γ ⊢ B

AUGMENT :
Γ ⊢ A ⊃ B iff Γ , A ⊢ B

GENERIC :

Γ ⊢ ∀𝑥 ∶ X . A iff Γ ⊢ A[𝑥↦𝑒] for parameter 𝑒 ∉ FV(Γ , A)

INSTANCE :

Γ ⊢ ∃𝑥 ∶ X . A iff Γ ⊢ A[𝑥↦𝑡] for some term 𝑡 ∶ X

Generalizing the terminology of Horn logic, in logic programming propositions that are
permitted to occur in sequent antecedents are called program formulas, while those that
are permitted to occur in sequent succedents are called goal formulas. One way to specify
the language of a logical system is by giving a recursive grammar specifying its program
and goal formulas. In [Mil+91], the language of hereditarily Harrop logic is presented.

Definition 8.2.2 (first-order hereditarily Harrop logic) The subsets of first-order proposi-
tions comprising the hereditarily Harrop program formulas, 𝒫 , and the hereditarily
Harrop goal formulas, 𝒢 are defined respectively by:

P ⩴ A | P ∧ P | ∀𝑥 ∶ X . P | G ⊃ A
G ⩴ A | ⊤ | G ∧ G | G ∨ G | ∀𝑥 ∶ X . G | ∃𝑥 ∶ X . G | P ⊃ G

5 The “O” signifies “operational inference”, a term due to Miller [Mil89a].

CHAPTER 8. PROOF SEARCH STRATEGIES 117

where A is is an atomic proposition.

In [Mil+91] it is shown that uniform provability is (sound and) complete with respect
to intuitionistic provability for hereditarily Harrop logic; that is, for Γ a hereditarily Harrop
program and G a hereditarily Harrop goal,

Γ ⊢ G ⟺ Γ ⊢ G

the demonstration describes a procedure for transforming an arbitrary intuitionistic proof
into a uniform one.

However, in order for uniform proof to be implemented as a strategy to search for proofs,
it must also specify a course of action when the succedent of a goal sequent is atomic. A
natural choice is the goal-directed strategy of backward-chaining.

Backward-chaining is a partial strategy that involves program formulas of the form,

∀𝑥 ∶ X . G ⊃ M

where G is a goal formula and M is both a program formula and a goal formula; that is
M ∈ 𝒫 ∩ 𝒢. We will call such a proposition a generalized implicative definite clause,
or just “definite clause” when no confusion is likely to result. Notice that in the grammar
for hereditarily Harrop program formulas, the head of an implication must be atomic. So
in hereditarily Harrop logic M will be an atom. Backward-chaining is the strategy of
attempting to unify a goal formula with the head of a definite clause in the program, and if
the unification succeeds, of applying the unifying substitution to the entire derivation and
replacing the matched goal with the tail of the program clause that matched it.

This is a generalization of the combination of the left phase and the unification phase
of SLD-resolution defined in the last section, since now the tail of a program clause need
not be a conjunction of atoms but may instead be any goal formula. In other words, we
may define backward-chaining as the following derived inference rule in the indexed sequent
calculus:

⋮
∶ ⋯

⋮
∶

() ⟹ ()
⟹

() ⟹ ()
⟹

, ⊃ ⟹ ⊃

, ∀ ∶ . ⊃ ⟹
∀

⟹ (8.3)

In the right branch of the ⊃L rule we again commit ourselves to using only the head of
the selected program clause (H) and not the rest of the program (Γ) to prove the atomic
goal (A). Therefore, this branch of the derivation must terminate immediately in an 𝑖𝑛𝑖𝑡

CHAPTER 8. PROOF SEARCH STRATEGIES 118

(modulo substitutions introduced by the indexed system). Miller has called this restricted
use of the ⊃L rule “simple” [Mil89a]. It is the restriction of the ⊃L rule to simple instances
that leads to backward-chaining on atoms.

The recursive grammar definition of hereditarily Harrop logic does not require program
formulas to be definite clauses. However, any hereditarily Harrop program may be converted
into a logically equivalent set of hereditarily Harrop definite clauses by a procedure known as
hereditarily Harrop program elaboration, introduced in [Mil89b] and simplified in [Nad93].

Lemma 8.2.3 (hereditarily Harrop program elaboration) The following translation con-
verts any hereditarily Harrop program formula into a logically equivalent set of hereditarily
Harrop definite clauses:

𝑒𝑙𝑎𝑏
𝒫 ⟶ ℘(𝒫)
A ⟼ {⊤ ⊃ A}

P ∧ P ⟼ 𝑒𝑙𝑎𝑏(P) ∪ 𝑒𝑙𝑎𝑏(P)
∀𝑥 ∶ X . P ⟼ {∀𝑥 ∶ X . P | P ∈ 𝑒𝑙𝑎𝑏(P)}

G ⊃ A ⟼ {G ⊃ A}

The definition of elaboration is extended to programs by setting 𝑒𝑙𝑎𝑏(Γ) ≔ ⋃ ∈ 𝑒𝑙𝑎𝑏(P).

In [Nad93] it is shown that the strategy of uniform proof with backward-chaining on
atoms is complete for first-order hereditarily Harrop logic.

8.3 Constructive Sequents

We now revisit the subject of goal-directed proof search from the perspective of our adjoint-
theoretic characterization of the connectives. We will show that this leads to a syntactically
richer, though ultimately no more expressive, logical system for which goal-directed search
is a complete proof search strategy.

Intuitionistic logic enjoys the property of being constructive. In proof theory, this is
often taken to mean that it satisfies the disjunction property and the existence property,
which state respectively:

⊢ A ∨ B ⟺ ⊢ A or ⊢ B and ⊢ ∃𝑥 ∶ X . A ⟺ ⊢ A[𝑥↦𝑡] for some 𝑡 ∶ X

In light of our investigation into adjunctions and the connectives, we would like to take a dif-
ferent perspective and argue that constructivity is characterized by freeness. Therefore, we
will say that it is about granting left connectives a property that right connectives automat-
ically enjoy: that the only way to construct a proof of a proposition with a given principal

CHAPTER 8. PROOF SEARCH STRATEGIES 119

connective is by using one of its introduction rules. Since falsehood has no introduction
rules, we may add the rather trivial falsehood property:

⊢ ⊥ ⟺ never

This is simply another way of stating the consistency of a logic, since if ⊥ were provable,
then by ⊥−, every proposition would be provable.

The proofs are immediate: in Gentzen’s cut-free sequent calculus there are no applicable
rules in the case of ⊥, two in case of ∨ and one in case of ∃. In each case, the premises are
exactly the conditions claimed. Thus we may always begin the search for a sequent proof
of a left proposition – one where the principal connective is a left connective – from no
assumptions by (nondeterministically) applying a right rule of its principal connective.

In contrast, the right connectives enjoy a much stronger property. Because their sequent
calculus right rules are invertible, we may safely begin the search for a sequent proof of a
right proposition from any set of assumptions with the right rule of its principal connective
and never have to reconsider the decision. Note that this does not hold in general for left
propositions. For example, any attempt to begin the search for a proof of even ⊥ ⟹ ⊥,
A ∨ B ⟹ A ∨ B or ∃𝑥 ∶ X . A ⟹ ∃𝑥 ∶ X . A with a right rule is doomed to failure.

With this in mind, we would like to generalize the definitions of the disjunction and
existence properties.

Definition 8.3.1 (∗-property) For ⊢ a consequence relation, 𝒫 a set of propositions and ∗
(the name of) a connective, we say that 𝒫 satisfies the ∗-property if for any finite Γ ⊆ 𝒫 and
G a proposition with principal connective ∗, the natural deduction rules ∗+, equivalently,
the sequent calculus rules ∗R, are collectively invertible for all instances of Γ ⊢ G.

The preceeding discussion implies that for intuitionistic first-order derivability, the empty
theory has the ∗-property for every connective and that every theory has the ∗-property for
right connectives.

In the early 1960s it was observed by Harrop [Har60] and Kleene [Kle62] that the dis-
junction and existence properties (for the empty theory) of intuitionistic first-order logic
may be strengthened.

Proposition 8.3.2 In intuitionistic first-order logic we have the following two properties.

Strong disjunction property: If Γ contains no member in which a disjunction appears
strictly positively then,

Γ ⊢ A ∨ B ⟺ Γ ⊢ A or Γ ⊢ B

CHAPTER 8. PROOF SEARCH STRATEGIES 120

Strong existence property: If Γ contains no member in which either a disjunction or
existential appears strictly positively then,

Γ ⊢ ∃𝑥 ∶ X . A ⟺ Γ ⊢ A[𝑥↦𝑡] for some term 𝑡 ∶ X

The reverse directions of these two statements are an immediate consequence of the
respective sequent right rules, thus their real content is describing conditions sufficient for
instances of these rules to be invertible. As a historical matter, the derivation systems used
by Harrop and Kleene differ from the ones presented here, however proofs using intuitionistic
natural deduction can be found in [Pra65]. To these we again add the rather trivial strong
falsehood property.

Lemma 8.3.3 (strong falsehood property) In intuitionistic first-order logic, if Γ contains
no member in which ⊥ appears strictly positively then,

Γ ⊢ ⊥ ⟺ never

Proof. In Gentzen’s cut-free sequent calculus, we consider what the first inference rule of a
proof of Γ ⟹ ⊥ could be. It can’t be 𝑖𝑛𝑖𝑡 because ⊥ ∉ Γ by assumption. It can’t be a
right rule because there is no ⊥R rule. So it must be a logical left rule. But each such rule
instance has the property that it has a premise that is a sequent Γ ⟹ ⊥ in which ⊥ does
not occur strictly positively in Γ . Since an infinite chain of left rules cannot constitute a
proof, no proof exists.

It follows from the strong left-connective properties and the even stronger property for
right connectives described above that:

Corollary 8.3.4 If Γ contains no member in which a left proposition appears strictly
positively then for any non-atomic proposition G, The sequent Γ ⟹ G has an intuitionistic
sequent proof if and only if it has one whose first step consists of a right rule that introduces
the principal connective of G.

We may use this fact to determine a fragment of intuitionistic first-order logic for which
the simple strategy of applying right rules whenever possible is complete with respect to full
intuitionistic sequent provability. To do this we examine the circumstances under which the
premise of corollary 8.3.4 could fail to hold throughout an entire sequent derivation. The
only rules that allow a (sub)formula to “cross the turnstile”, that is, to move between the
antecedent and the succedent are those for implication.

When read from conclusion to premises, the only rule that allows a formula to cross
the turnstile from right to left is ⊃R, which turns the hypothesis of an implication in

CHAPTER 8. PROOF SEARCH STRATEGIES 121

the succedent into a member of the antecedent. Thus, in order to ensure that no left-
proposition occurs strictly positively in the antecedent, we must ensure that none occurs
strictly positively in the hypothesis of an implication that itself occurs strictly positively
in the succedent. Similarly, the only rule that allows a formula to cross the turnstile from
left to right is ⊃L, which turns the hypothesis of an implication in the antecedent into a
succedent. Since these two situations may be mutually recursive, in order to ensure that
no left-proposition occurs strictly positively in the antecedent, we must ensure that none
occurs positively at all in the antecedent, or negatively in the succedent. This justifies the
following:

Proposition 8.3.5 (sufficient condition for completeness of uniform proof) If Γ ⟹ G is a
sequent in which left connectives occur only negatively in Γ and only positively in G then it
has an intuitionistic proof just in case it has one that follows the strategy of always applying
a right rule when the succedent is not atomic.

We will say that a formula or connective occurs positively, respectively, negatively, in
a sequent if it occurs positively, respectively, negatively, in the succedent or negatively,
respectively, positively, in the antecedent. This is natural since a sequent is simply a meta-
level implication.

Definition 8.3.6 (constructive sequent) We will call sequents in which left connectives
occur only positively constructive sequents and their constituent parts constructive
antecedents or “constructive contexts”, composed of constructive assumptions; and con-
structive succedents or “constructive goals”.

Thus proposition 8.3.5 states that uniform provability is complete with respect to in-
tuitionistic provability for constructive sequents. We may now give a recursive grammar
description for the language of constructive sequents.

Definition 8.3.7 (first-order constructive logic) The subsets of first-order propositions
comprising the constructive program formulas, 𝒫 , and the constructive goal formu-
las, 𝒢 , are defined respectively by:

P ⩴ A | ⊤ | P ∧ P | ∀𝑥 ∶ X . P | G ⊃ P
G ⩴ A | ⊤ | ⊥ | G ∧ G | G ∨ G | ∀𝑥 ∶ X . G | ∃𝑥 ∶ X . G | P ⊃ G

where A is an atomic proposition.

This language is strictly richer than that of hereditarily Harrop logic from definition 8.2.2,
and therefore gives rise to a syntactically richer notion of logic programming languages. But
unfortunately, the added expressiveness is illusory, as the following lemmas show.

CHAPTER 8. PROOF SEARCH STRATEGIES 122

Lemma 8.3.8 Any constructive program formula is logically equivalent to one having the
property that all implication heads are atomic.

Proof. In constructive program formulas the head of an implication must be either an atom
or a right proposition. If it is the latter then the implication is equivalent to a constructive
program formula where outermost implications have strictly simpler heads:

G ⊃ ⊤ ≡ ⊤
G ⊃ (P ∧ P) ≡ (G ⊃ P) ∧ (G ⊃ P)
G ⊃ (G ⊃ P) ≡ (G ∧ G) ⊃ P
G ⊃ (∀𝑥 ∶ X . P) ≡ ∀𝑥 ∶ X . G ⊃ P

We may use this fact to rewrite all program formulas to logically equivalent ones where all
implication heads are atomic.

Lemma 8.3.9 Permitting ⊤ to occur in program formulas does not allow us to prove any
additional goals.

Proof. We may rewrite away any such occurrences by the logical equivalences:

⊤ ∧ P ≡ P ∧ ⊤ ≡ P
G ⊃ ⊤ ≡ ⊤

∀𝑥 ∶ X . ⊤ ≡ ⊤

and the fact that Γ , ⊤ ⟹ G iff Γ ⟹ G.

Lemma 8.3.10 A constructive goal containing ⊥ is either logically equivalent to a hered-
itarily Harrop one, or else unprovable from a constructive program.

Proof. By the logical equivalences:

⊥ ∧ G ≡ G ∧ ⊥ ≡ ⊥
⊥ ∨ G ≡ G ∨ ⊥ ≡ G

∃𝑥 ∶ X . ⊥ ≡ ⊥
any constructive goal containing ⊥ may either be rewritten to an equivalent hereditarily
Harrop one or else is of the form:

G ⩴ ⊥ | P ⊃ G | ∀𝑥 ∶ X . G

A constructive sequent Γ ⟹ ⊥ is unprovable by the strong falsehood property (lemma
8.3.3). A constructive sequent Γ ⟹ P ⊃ G or Γ ⟹ ∀𝑥 ∶ X . G is unprovable because ⊃
and ∀ are right connectives so their right rules are invertible:

Γ , P ⟹ G
Γ ⟹ P⊃ G ⊃R and

Φ , 𝑥 ∶ X | Γ ⟹ G
Φ | Γ ⟹ ∀𝑥 ∶ X . G ∀R

CHAPTER 8. PROOF SEARCH STRATEGIES 123

By induction on the size of the goal, any constructive sequent Γ ⟹ G is unprovable.

Thus we may always rewrite a constructive sequent to an equivalent one that is either
hereditarily Harrop, or which we know to be unprovable. Nevertheless, the language of
constructive sequents may be useful for providing a more intuitive expression of program
and goal formulas.

We may extend the program elaboration function to the language of constructive pro-
grams so that we may use backward-chaining for atomic goals:

Lemma 8.3.11 (constructive program elaboration) The following translation converts any
constructive program formula into a logically equivalent set of constructive definite clauses:

𝑒𝑙𝑎𝑏
𝒫 ⟶ ℘(𝒫)
A ⟼ {⊤ ⊃ A}
⊤ ⟼ ∅

P ∧ P ⟼ 𝑒𝑙𝑎𝑏(P) ∪ 𝑒𝑙𝑎𝑏(P)
∀𝑥 ∶ X . P ⟼ {∀𝑥 ∶ X . P | P ∈ 𝑒𝑙𝑎𝑏(P)}

G ⊃ A ⟼ {G ⊃ A}
G ⊃ ⊤ ⟼ ∅

G ⊃ (P ∧ P) ⟼ 𝑒𝑙𝑎𝑏(G ⊃ P) ∪ 𝑒𝑙𝑎𝑏(G ⊃ P)
G ⊃ (G ⊃ P) ⟼ 𝑒𝑙𝑎𝑏((G ∧ G) ⊃ P)
G ⊃ ∀𝑥 ∶ X . P ⟼ {∀𝑥 ∶ X . P | P ∈ 𝑒𝑙𝑎𝑏(G ⊃ P)}

This simply extends hereditarily Harrop program elaboration (lemma 8.2.3) by the equiv-
alences in the proof of lemma 8.3.8.

8.4 Focused Proof Search

Finally, in this section we no longer restrict ourselves to various fragments of intuitionistic
first-order logic such as Horn or hereditarily Harrop logic, and consider instead proof search
in the whole, unrestricted logic. Although the semi-decision procedure of simply trying
all proofs is complete, it is also hopelessly inefficient. This is due to the high degree of
redundancy involved in such a naïve strategy: many attempted proofs will reach the same
outcome because they differ in only inessential ways. Fortunately, we can do much better
than this.

By considering the adjunction-based properties of derivations that we have been study-
ing, we are naturally led to the strategy of eagerly and nondeterministically applying the

CHAPTER 8. PROOF SEARCH STRATEGIES 124

invertible eigenrules whenever possible. But this strategy can be refined even further into
a type of search strategy called a “focusing” (or “focussing”) strategy without sacrificing
completeness.

Focusing was first developed by Andreoli for proof search in classical linear logic [And92;
And01]. However, the principles of focusing are quite general and may be applied to in-
tuitionistic (cartesian) logic as well. These are twofold. First, we should prefer to apply
invertible rules whenever possible because doing so will never require future backtracking.
Second, when we are forced to make a nondeterministic choice, which we may have to re-
consider in the future, we should continue to explore the consequences of that choice rather
than make gratuitous unrelated nondeterministic choices.

In Andreoli’s description of focusing, the logical inference rules are partitioned into two
sets, called asynchronous and synchronous. The asynchronous rules are invertible while
synchronous rules are not and generally involve some form of nondeterministic choice.
Focused proof search proceeds in two alternating phases, beginning in an inversion phase.
In an inversion phase, asynchronous rules are applied repeatedly until none is applicable.
A sequent to which no asynchronous rule is applicable is called a neutral sequent. When
a sequent in the frontier of a derivation becomes neutral one of its propositions is nonde-
terministically selected for focus. This marks the transition from an inversion phase to a
focused phase. In a focused phase, only synchronous rules may be applied, and only if the
principal formula of a rule instance is the focused one. The application of a synchronous
rule transmits the focus to the active formula of each premise (thus, each premise of a syn-
chronous rule must have exactly one active formula). Within a derivation branch, focus
is lost when no synchronous rule is applicable to the focused proposition. This marks the
transition from a focused phase back to an inversion phase.

The situation becomes more complex when focusing is combined with the polarization
of atoms, which we do not consider here in depth. Briefly, atomic propositions may be arbi-
trarily (but consistently) assigned either negative polarity or positive polarity. Negative
atoms may be focused only on the left, and positive ones only on the right of a sequent.
Since no logical sequent rule has an atomic principal formula, once an atom is selected for
focus the derivation branch must immediately terminate in an 𝑖𝑛𝑖𝑡 (possibly preceded by
substitutions in the indexed case), which may be applied only during a focused phase. If
𝑖𝑛𝑖𝑡 cannot be applied with the focused atom, then we must fail and backtrack. Assigning
all atoms negative polarity results in a backward-chaining strategy, and dually, assigning all
atoms positive polarity results in a forward-chaining strategy. Assigning differing polarities
to different atoms results in a mixed strategy. Further details may be found in [CP08]. In
the sequel we do not polarize atoms and thus allow unrestricted use of the initial sequent
axiom.

CHAPTER 8. PROOF SEARCH STRATEGIES 125

In focused derivations, we will indicate a focused proposition by underlining it. Further,
we will indicate the transitions between inversion and focused phases with the inference
rules,

, ⟹
, ⟹

, ⟹
, ⟹

, ⟹
, ⟹

, ⟹
, ⟹

where, reading from conclusion to premise, 𝑓𝑜𝑐𝑢𝑠 may be applied only to a neutral sequent,
and 𝑏𝑙𝑢𝑟 may be applied only when no synchronous rule applies to the focused proposition.

We note in passing that it is customary to use a different symbol to indicate a focused
sequent (typically, “⟶”). However, it is unnecessary to do so: either the sequent is focused,
in which case exactly one of its propositions is underlined, or else it is unfocused, in which
case none is.

In the rest of this section we will assume that our sequent calculus has two non-invertible
∧L rules (like Gentzen’s original system LJ) rather than a single invertible one, as described
in chapter 7. The reasons for this are threefold. First, it permits the perfect correspon-
dence between the concepts of eigenrule and asynchronous rule, and respectively, anderrule
and synchronous rule. Next, it will allow us to use a theorem of Kleene’s regarding the
permutability of adjacent inferences in a sequent derivation (involving the consideration of
156 cases!) without modification. Finally, it permits easier comparison to another focused
sequent system due to Dyckhoff and Pinto, to be described shortly. However, for practical
proof search, we would likely prefer the system with the single invertible ∧L rule to further
reduce nondeterminism.

Example 8.4.1 (a focused sequent proof) To illustrate the strategy of focusing we present
the following example of a focused sequent proof:

⊃ , ⟹

⟹ , ⟹
⊃ , ⟹ ⊃

⊃ , ⟹
⊃ , ⟹ ⊃ , , ⟹

⊃ , , ⊃ ⟹ ⊃

⊃ (⊃) , ⊃ , ⟹ ⊃

⊃ (⊃) , ⊃ , ⟹
⊃ (⊃) , ⊃ ⟹ ⊃ ⊃

⊃ (⊃) ⟹ (⊃) ⊃ (⊃) ⊃

This is not the only possible focused proof of this sequent, we could have just as well chosen

CHAPTER 8. PROOF SEARCH STRATEGIES 126

the implication A ⊃ B for initial focus. However, beginning as we did, it would not be
allowed to blur the focus on B ⊃ C after the first application of ⊃L and focus on A ⊃ B
instead. Although doing so would still lead to a valid sequent proof, it would not be a
focused proof.

The strategy of focusing subsumes that of uniform proof, which can be seen as follows.
In the language of elaborated constructive sequents left propositions may not occur in the
antecedent, so the only thing that can happen during an inversion phase is the decomposition
of right propositions in the succedent. When a constructive sequent becomes neutral, it
means that the succedent is either a left proposition or atomic. If it is a left proposition
then we select it for focus and begin a focused phase. Alternating between inversion and
succedent-focused phases, eventually the succedent must become atomic. In this case, we
choose a clause from the antecedent for focus and decompose it until we reach the situation,

∶ ⋯ ∶
⟹ , ⟹

, ⊃ ⟹ ⊃

, ∀ ∶ . ⊃ ⟹
∀

⟹

where A and A are both atomic. Now, if we maintain focus on A in the right branch of ⊃L
(for example by assigning it negative polarity) then the only thing we can do there is to
unify A and A , otherwise we must fail and backtrack. Notice that in the left branch of ⊃L,
the focus has returned to the succedent, so we simply repeat the process again as needed.

Andreoli’s strategy of focusing is trivially sound for intuitionistic first-order logic, as it
is merely imposes restrictions on the application of its inference rules. By simply erasing
the focusing annotations and collapsing 𝑓𝑜𝑐𝑢𝑠 and 𝑏𝑙𝑢𝑟 inferences, every focused sequent
derivation becomes an ordinary sequent derivation. Andreoli originally proved focusing
complete for classical linear logic, in the sense that every provable sequent is provable by
a focused derivation, by examining the permutability of adjacent inferences. An analogous
result holds for intuitionistic first-order logic.

Definition 8.4.2 (adjacent inferences) In a sequent derivation, we will say that two prim-
itive inferences are adjacent if they are separated by only structural rule instances.

Definition 8.4.3 (non-nested inferences) In a sequent derivation, we will say that two
primitive inferences that can be applied to the same sequent are non-nested if they have
different principal formulas.

In other words, primitive inferences R and R are non-nested if either R and R are
both left rule instances acting on distinct assumptions, or else R is a left rule instance
acting on some assumption and R is a right rule instance acting on the goal.

CHAPTER 8. PROOF SEARCH STRATEGIES 127

Unless a pair of non-nested inferences includes an axiom, it is always possible to apply
them as adjacent inferences in either order. Given two adjacent non-nested inferences per-
formed in one order, we wish to determine whether we could instead perform them in the
opposite order, and still recover the same proof state (possibly after applying further infer-
ences) that results from the original order of application. The following definitions make
this notion precise.

Definition 8.4.4 (permutable inferences) In a sequent derivation with adjacent non-nested
inferences R and R such that R is below R , we say that R is permutable below (or before)
R if applying R to the sequent that was originally the conclusion of R and then applying
R to some resulting premise creates a frontier from which the original frontier may be
recovered by the application of further inferences. We also consider axioms such as ⊥L and
⊤R to be permutable below any other inference, despite the fact that applying them first
eliminates the opportunity, or need, to apply the other inference.

Definition 8.4.5 (permutable inference rules) For inference rules R and R , we say that
R is permutable below R if for any adjacent non-nested instances of R and R , the instance
of R is permutable below the instance of R .

There is a theorem due to Kleene [Kle52] that the only “forbidden permutations” in
intuitionistic first-order logic not involving the connectives ⊤ and ⊥ are,

(∀L , ∀R) , (∀L , ∃L) , (∃R , ∃L) , (⊃L , ⊃R) , (⊃L , ∨L) , (∨R , ∨L) , (∃R , ∨L)

meaning that the first rule in each pair is not permutable below the second. Including the
nullary connectives adds the pairs,

(⊃L , ⊤R) , (∀L , ⊤R) , (∀L , ⊥L) , (∀L , ⊤R)

Notice that in each case, the first rule is an anderrule (hence synchronous) while the second
is an eigenrule (hence asynchronous). Therefore asynchronous inferences may always be
permuted below synchronous ones; and within the set of asynchronous, respectively, syn-
chronous rules, the permuting of inferences preserves provability. This suffices to show the
completeness of focusing for intuitionistic first-order logic.

It turns out that for all permutations of eigenrules, and for those of anderrules not
involving ⊃L, we have an even stronger and simpler result.

Definition 8.4.6 (strictly commuting inferences) For non-nested primitive inferences R
and R , we will say that they are strictly commuting if the frontier obtained by first applying
R and then applying R to all of the resulting premises to which it is applicable is the same
as that obtained by reversing the roles of R and R .

CHAPTER 8. PROOF SEARCH STRATEGIES 128

Definition 8.4.7 (strictly commuting inference rules) We will say that a pair of inference
rules is strictly commuting if all pairs of their respective instances are strictly commuting.

Lemma 8.4.8 (eigenrules commute strictly) All pairs of eigenrules are strictly commuting.

Proof. The eigenrules for ⊤ and ⊥ commute strictly with every eigenrule since their appli-
cation results in an empty frontier. The strict commutativity of the remaining eigenrules
is presented in figure 8.1, except for (∨L , ∨L), which does not readily fit in the width of a
page, but is nonetheless just as straightforward as the other cases, as the interested reader
may check.

Lemma 8.4.9 (strictly commuting anderrules) All pairs of anderrules not involving ⊃L
and another right anderrule are also strictly commuting.

Proof. See figure 8.2.

The reason for the failure of strict commutativity of ⊃L with ∧L and ∀L is that doing
⊃L first causes the principal formula of the other rule to appear in both of the resulting
premises, where different choices of conjunct, respectively, representative, may then be
made. Nonetheless, in both cases, as well as that for (⊃L , ⊃L), permutability can be
salvaged (as guaranteed by Kleene’s theorem) by retaining a copy of the principal formula
of the other rule in one of the subderivations and then applying that rule again after the
⊃L. This would suggest the heuristic of preferring ⊃L inferences to ∧L (when using the two
non-invertible rules) or ∀L in proof search.

We now examine some proof-theoretic properties of focusing through the lens of our
adjoint-theoretic interpretation of intuitionistic first-order logic. The justification for ea-
gerly applying asynchronous rules is clear: these rules are eigenrules, hence invertible. In
fact, their application preserves, not only provability, but indeed the set of all normal
derivations, up to bijection, under the Prawitz translation. Because of the invertibility of
left eigenrules, there is no need to retain their principal formulas in the premises. Thus
each asynchronous inference strictly decreases the size of the resulting goal sequents in the
frontier of a derivation, so can’t cause non-termination.

Consider the issue of the order of application of eigenrules. For instances that are nested,
such as the two instances of ⊃R in example 8.4.1, there is no choice, the outermost one must
be applied first. Since the composition of eigenrules induces a composite natural bijection,
we may think of trees of nested eigenrules as a single derived admissible eigenrule.

On the other hand, for instances that are not nested we have a genuine choice. Given
any two non-nested eigenrule instances we know that that the frontier resulting from one

CHAPTER 8. PROOF SEARCH STRATEGIES 129

(∧ , ∨)

, ⟹ , ⟹
, ∨ ⟹

, ⟹ , ⟹
, ∨ ⟹ ∨

, ∨ ⟹ ∧ ∧

, ⟹ , ⟹
, ⟹ ∧

, ⟹ , ⟹
, ⟹ ∧ ∧

, ∨ ⟹ ∧ ∨

(∧ , ∃)

, ⟹
, ∃ ∶ . ⟹

, ⟹
, ∃ ∶ . ⟹

∃ ()

, ∃ ∶ . ⟹ ∧ ∧

, ⟹
, ⟹ ∧

, ⟹
, ⟹ ∧ ∧

, ∃ ∶ . ⟹ ∧
∃ ()

(⊃ , ∨)

, , ⟹ , , ⟹
, ∨ , ⟹ ∨

, ∨ ⟹ ⊃ ⊃

, , ⟹
, ⟹ ⊃

, , ⟹
, ⟹ ⊃ ⊃

, ∨ ⟹ ⊃ ∨

(⊃ , ∃)

, , ⟹
, ∃ ∶ . , ⟹

∃ ()

, ∃ ∶ . ⟹ ⊃ ⊃

, , ⟹
, ⟹ ⊃ ⊃

, ∃ ∶ . ⟹ ⊃
∃ ()

(∀ , ∨)

, ⟹ , ⟹
, ∨ ⟹ ∨

, ∨ ⟹ ∀ ∶ .
∀ ()

, ⟹
, ⟹ ∀ ∶ .

, ⟹
, ⟹ ∀ ∶ .

∀ ()

, ∨ ⟹ ∀ ∶ . ∨

(∀ , ∃)

, ⟹
, ∃ ∶ . ⟹

∃ ()

, ∃ ∶ . ⟹ ∀ ∶ .
∀ ()

, ⟹
, ⟹ ∀ ∶ .

∀ ()

, ∃ ∶ . ⟹ ∀ ∶ .
∃ ()

(∨ , ∃)

, , ⟹
, , ∃ ∶ . ⟹

, , ⟹
, , ∃ ∶ . ⟹

∃ ()

, ∨ , ∃ ∶ . ⟹ ∨

, , ⟹ , , ⟹
, ∨ , ⟹ ∨

, ∨ , ∃ ∶ . ⟹
∃ ()

(∃ , ∃)

, , ⟹
, , ∃ ∶ . ⟹

∃ ()

, ∃ ∶ . , ∃ ∶ . ⟹
∃ ()

, , ⟹
, ∃ ∶ . , ⟹

∃ ()

, ∃ ∶ . , ∃ ∶ . ⟹
∃ ()

Figure 8.1: strict commutativity of eigenrules

CHAPTER 8. PROOF SEARCH STRATEGIES 130

(∨ , ∧)

, ⟹
, ∧ ⟹

∧

, ∧ ⟹ ∨
∨

, ⟹
, ⟹ ∨

∨

, ∧ ⟹ ∨
∧

(∨ , ⊃)

, ⊃ ⟹ , ⟹
, ⊃ ⟹ ⊃

, ⊃ ⟹ ∨
∨

, ⊃ ⟹
, ⟹

, ⟹ ∨
∨

, ⊃ ⟹ ∨ ⊃

(∨ , ∀)

∶ , ⟹
, ∀ ∶ . ⟹ ∀

, ∀ ∶ . ⟹ ∨
∨

∶
, ⟹

, ⟹ ∨
∨

, ∀ ∶ . ⟹ ∨ ∀

(∃ , ∧)
∶

, ⟹
, ∧ ⟹

∧

, ∧ ⟹ ∃ ∶ . ∃

∶ , ⟹
, ⟹ ∃ ∶ . ∃

, ∧ ⟹ ∃ ∶ .
∧

(∃ , ⊃)
∶

, ⊃ ⟹ , ⟹
, ⊃ ⟹ ⊃

, ⊃ ⟹ ∃ ∶ . ∃
, ⊃ ⟹

∶ , ⟹
, ⟹ ∃ ∶ . ∃

, ⊃ ⟹ ∃ ∶ . ⊃

(∃ , ∀)
∶

∶ , ⟹
, ∀ ∶ . ⟹ ∀

, ∀ ∶ . ⟹ ∃ ∶ . ∃
∶

∶ , ⟹
, ⟹ ∃ ∶ . ∃

, ∀ ∶ . ⟹ ∃ ∶ . ∀

(∧ , ∧)

, , ⟹
, , ∧ ⟹

∧

, ∧ , ∧ ⟹
∧

, , ⟹
, ∧ , ⟹

∧

, ∧ , ∧ ⟹
∧

(∧ , ∀)

∶ , , ⟹
, , ∀ ∶ . ⟹ ∀

, ∧ , ∀ ∶ . ⟹
∧

∶
, , ⟹

, ∧ , ⟹
∧

, ∧ , ∀ ∶ . ⟹ ∀

(∀ , ∀)
∶

∶ , , ⟹
, , ∀ ∶ . ⟹ ∀

, ∀ ∶ . , ∀ ∶ . ⟹ ∀
∶

∶ , , ⟹
, ∀ ∶ . , ⟹ ∀

, ∀ ∶ . , ∀ ∶ . ⟹ ∀

Figure 8.2: strictly commutative anderrules

CHAPTER 8. PROOF SEARCH STRATEGIES 131

order of application will have a set of proofs whose Prawitz translation is in bijection with
the set obtained from the frontier resulting from the other order of application. But as we
have just seen by the strict commutativity of the eigenrules, an even stronger result holds:
the frontiers will be exactly the same.

Our adjoint-theoretic understanding of the eigenrules explains this as well. Consider the
example of (∧R ,∨L) in figure 8.1. On the one hand we have the composite natural bijection,

Prop (A ∨ B → C ∧ D) ≅ ((Prop × Prop) × (Prop × Prop)) ((A , B) , (A , B) → (C , C) , (D , D))

and on the other,

Prop (A ∨ B → C ∧ D) ≅ ((Prop × Prop) × (Prop × Prop)) ((A , A) , (B , B) → (C , D) , (C , D))

Since the cartesian product is associative and commutative up to isomorphism, these are
each isomorphic to

Prop ((A , A , B , B) → (C , D , C , D))

resulting in the same frontier. Similar results hold for all other possible pairs of non-nested
adjacent eigenrule inferences, as the reader may check.

Because the order of asynchronous inference application is irrelevant in this strong sense,
Andreoli called the nondeterminism involved inessential nondeterminism, and proposed
to consider such inferences to be acting in parallel, as a single derived inference rule com-
prising the inversion phase. This has the effect of eliminating a great deal of redundancy
from proof search as it collapses all derivations differing only in the order of application
of adjacent eigenrules into a single derivation while preserving completeness in the strong
sense of preserving all normal derivations under the Prawitz translation.

Unfortunately, not all nondeterminism in proof search is inessential. The choices made
when applying synchronous rules introduce a form of essential nondeterminism into proof
search. Kleene’s result guarantees that by making such choices in a focused way we don’t
sacrifice provability. But notice that this is a weaker statement than to say that we don’t
give up any normal proofs. However, lemma 8.4.9 shows us that synchronous inferences
in sets not containing both ⊃L and another right anderrule may also be seen as acting in
parallel.

We now consider several notions of completeness in the context of logic programming.
Since the whole purpose of a proof search strategy is to prune the space of possible proofs
under consideration, it would be counterproductive for a search strategy to find every pos-
sible proof, that is, to possess all-proofs completeness. It would also be undesirable to
fail to find any proofs at all, if indeed there were proofs to be found. Such a situation would
correspond to a failure of provability completeness, which is the usual notion. However,

CHAPTER 8. PROOF SEARCH STRATEGIES 132

these extremes are not the only possible kinds of completeness, and the question of just
what sort of completeness a strategy does, or should, enjoy turns out to be a delicate one.

The concept of input-output semantics in logic programming means that mere provability
completeness is not sufficient for such purposes. For example, given the logic program for
addition in example 8.1.1, and the goal ∃𝑥 , 𝑦 ∶ ℕ . P(𝑥 , 𝑦 , 3), which asks whether there is a
pair of natural numbers that sum to 3, we should not be satisfied if a proof search strategy
is able to find a proof with computed answer (𝑥 ≔ 0 , 𝑦 ≔ 3), but not one with, say,
(𝑥 ≔ 1 , 𝑦 ≔ 2). Such a situation would correspond to a failure of answer completeness.
For the purpose of logic programming, this would seem to be the minimum standard of
completeness that we desire. But it is unclear to what aspect of formal proof structure this
type of completeness corresponds.

Another form of completeness that we could seek, which is stronger than answer com-
pleteness but weaker than all-proofs completeness is normal-proofs completeness, where
“normal proofs” refers to normal natural deductions under the Prawitz translation. This
type of completeness has the advantage that it has a clear proof-theoretic interpretation.
However, from the perspective of logic programming, it is stronger than necessary since dif-
ferent normal proofs may correspond to the same input-output behavior. Nevertheless, its
clear connection to proof semantics, which is so-far lacking in the case of computed answer
completeness, makes it a good candidate for study.

Such an approach has been pursued by Roy Dyckhoff and Luís Pinto [DP96; DP99] Their
sequent system, called “MJ” may be seen as a focusing strategy, though it is based not on
the work of Andreoli, but rather on a term calculus proposed by Hugo Herbelin. In [Her95]
Herbelin presented a term calculus of realizers for an intuitionistic sequent calculus that is
isomorphic to normal terms of the λ-calculus. Under the Curry-Howard correspondence,
Dyckhoff and Pinto repurposed this as a sequent calculus isomorphic to normal natural
deduction.

Dyckhoff and Pinto were motivated by the desire to investigate Brouwer–Heyting–
Kolmagorov (BHK) style semantics; that is, not questions of, “is this proposition valid”,
but rather, “what are the possible proofs of this proposition”. Thus they were interested
in issues of proof enumeration rather than just provability. As proof objects they chose
normal natural deductions for their clear interpretation as computational procedures under
the Curry-Howard correspondence. But they also wanted to work in a sequent system, for
the reasons mentioned at the beginning of section 7.3. And this is precisely what Herbelin’s
calculus provided.

Sequent system MJ, presented in figure 8.3, may be seen as a focused sequent calculus
with focusing only on the left. That is, although propositions in the context may be focused,
those in the goal may not be. Notice that each of the left eigenrules triggers a loss of

CHAPTER 8. PROOF SEARCH STRATEGIES 133

, ⟹
, , ⟹
, ⟹

⟹

, ⟹

⟹ ⟹
⟹ ∧ ∧

, ⟹
, ∧ ⟹

∧
, ⟹

, ∧ ⟹
∧

⟹
⟹ ∨ ∨ ⟹

⟹ ∨ ∨ , ⟹ , ⟹
, ∨ ⟹ ∨

, ⟹
⟹ ⊃ ⊃

⟹ , ⟹
, ⊃ ⟹ ⊃

⟹ [↦]
⟹ ∀ ∶ . ∀

∶ , [↦] ⟹
, ∀ ∶ . ⟹ ∀

∶ ⟹ [↦]
⟹ ∃ ∶ . ∃

, [↦] ⟹
, ∃ ∶ . ⟹ ∃

𝑒 does not occur in the conclusion

Figure 8.3: Sequent System MJ

CHAPTER 8. PROOF SEARCH STRATEGIES 134

focus. This can be understood in terms of Andreoli’s characterization of focusing: the
applicability of a left eigenrule implies that we should now be in an inversion phase, so if we
are transitioning from a focused phase we blur, then we apply the eigenrule and remain in
the inversion phase or transition to a right-focused phase, which are not distinguished in this
derivation system, until we select a new focus on the left with the contraction rule. Unlike
Adreoli-style focusing, system MJ allows for the selection of a new focus on the left during
an inversion or right-focused phase. Thus MJ permits more derivations than Andreoli-style
focusing does. Since MJ-derivations are in bijection with normal natural deductions, this
would imply that Andrioli-style focusing is not complete for normal proofs, though we have
not yet been able to characterize the class of proofs missed. A further difference is that
MJ duplicates left propositions in the context by contraction when focusing on them. By
our adjoint-theoretic analysis, we know that this should never be necessary since the left
rules of left propositions are eigenrules and so induce bijections of normal natural deduction
derivations.

We do not yet know whether Andreoli-style focusing is sufficient to provide the answer-
completeness desired in logic programming, or whether a system like MJ is needed.

Chapter 9

Conclusion, Related and Future Work

In this thesis we have shown how the combination of the hyperdoctrine interpretation of
typed intuitionistic first-order logic with the adjoint-theoretic description of its connectives
leads to a uniform presentation of Gentzen’s formal derivation systems of natural deduction
and sequent calculus in which the concept of connective chirality plays a central role. By
taking the adjoint-theoretic characterization of the quantifiers seriously, we were led to
decompose each of their non-invertible rules into a purely logical rule and a substitution.
This in turn has led us to the indexed sequent calculus, a formalism that reifies the concept
of logic variable and is thus well-suited to the task of proof search.

We have characterized the computation mechanisms for several systems of logic program-
ming as search strategies within the indexed sequent calculus and seen that the strategies
of SLD-resolution, uniform proof and focusing form a sequence in which each subsumes its
predecessor as a special case. In analyzing the strategy of focusing we have seen that it is
always safe to apply eigenrules eagerly because these rules determine a bijection of proof
objects, and therefore preserve provability. We have also seen why we may collect any sub-
derivation consisting solely of eigenrule inferences into an admissible “big step” rule, which
not only preserves provability, but in fact yields the same derivation frontier regardless
of the order in which the constituent inferences are applied. This justifies one of the two
principles underlying the strategy of focusing.

In logic programming we desire strategies that are complete, not just for provability,
but for answers as well. We have encountered at least one derivation system that fulfills
this criterion, in the form of system MJ. Further investigation is needed to give answer
completeness a proof-theoretic characterization and to determine under what conditions
Andreoli-style focusing possesses it.

Another line of inquiry that is suggested is to give a categorical semantics for Andreoli’s
concept of parallelism in proof search. Because permuting instances of strictly commuting

135

CHAPTER 9. CONCLUSION, RELATED AND FUTURE WORK 136

inference rules has no effect on the rest of a derivation, it seems sensible to admit derived
inference rules for combinations of these. This would allow a representation of sequent
derivations that is more compact and that eliminates inessential nondeterminism. For in-
stance, the derivation in example 7.3.5 could be represented as:

∶ , ∶ ⟹ ∶
∶ , ∶ ⟹ ∶

∶ , ∶ ⟹ ∶
∶ , ∶ ⟹ ∶

∶ , ∶ | (,) ⟹ (,)
∶ , ∶ , ∶ , ∶ | (,) ⟹ (,)

∶ , ∶ | ∀ ∶ . (,) ⟹ ∃ ∶ . (,)
∀ ‖ ∃

∅ | ∃ ∶ . ∀ ∶ . (,) ⟹ ∀ ∶ . ∃ ∶ . (,)
∀ ‖ ∃

Here σ is the obvious substitution and we have used the operator “− ‖ −” to represent the
parallel composition of strictly commuting inference rules. The obvious categorical tool to
interpret this sort of parallelism would be a tensor product.

The categorical semantics presented here can in principle be extended to higher-order
logics. This would likely involve treating the type theory and the logic as a single depen-
dent system. Categorical interpretations of constructive dependent type theories have been
developed using both indexed categories [Tay99] and fibrations [Jac99]. Interpretations of
formal derivation systems, like those presented here, should be possible for these as well.

Remaining within first-order logic, it is possible to add a logical constant representing the
predicate of term equality. Such a relation, with the properties of Leibniz equality, may be
given an adjoint-theoretic description, but using a somewhat richer notion of hyperdoctrine.
Briefly, if we have existential quantifiers for diagonal morphisms in the base category (∆ ∶
X ⟶ X , X), then we may define equality by,

− = − ≔ ∃∆(⊤)

where ∃∆ ⊣ ∆∗ and ∆∗ is the functor turning a proposition over two variables of the same
type into one over a single variable of that type, which is substituted for both of the original
variables:

𝑦 ∶ X , 𝑧 ∶ X | A prop
∆∗⟼ 𝑥 ∶ X | A[𝑦↦𝑥 , 𝑧↦𝑥] prop

This adjunction has the natural bijection,
∶ Prop(∶) (→ (∆∗ ∘ ∃∆)())

∶ Prop(∶ , ∶) (∃∆() → ∃∆())

where 𝑟𝑒𝑓𝑙 ≔ η(⊤) witnesses the reflexivity of equality. Turning this bijection upside-down
and reading it as a sequent inference rule gives,

𝑦 ∶ X , 𝑧 ∶ X | 𝑦 = 𝑧 ⟹ 𝑦 = 𝑧
𝑥 ∶ X | ⊤ ⟹ 𝑥 = 𝑥

Dispatching the initial sequent premise gives a right rule (and introduction rule) for equality.
Further details may be found in [Law70] and [See83].

CHAPTER 9. CONCLUSION, RELATED AND FUTURE WORK 137

Another axis along which this work could be extended is that of the type theory and
term language. In the preceding we have deliberately chosen a very simple version in order
to focus our attention on the logic. The type theory that we used has only atomic types,
and the term language has no relations other than syntactic equality. Clearly, this is not
satisfactory for practical logic programming. In principle, there is no problem in making
the category of types also bicartesian closed, though this will of course introduce relations
among terms like those in the fibers. For a practical system, it would be desirable to have
algebraic datatypes as well. Categorical interpretations for logic programming systems with
algebraic datatypes have been investigated by Lipton, McGrail and Amato [FFL03; McG99;
ALM09], who have also investigated adding arbitrary relations between terms, as are found
in constraint logic programming.

Categorical semantics have been given for other logics as well, perhaps most comprehen-
sively in the case of linear logic by Melliès in [Mel09]. There, adjunctions also play a role
in defining the connectives, but a more complex one. It may be that intuitionistic logic is
unique in having such an direct relationship between adjunctions and the connectives. But
this raises interesting questions. Because the adjoint nature of the connectives plays such a
central role in the algebraic properties of this logic, one wonders what abstract categorical
structures there may be governing the properties of other logics.

Appendix A

Categorical Notation

Category theory is rife with ambiguous and conflicting notation. Our aim is to follow
established conventions as much as possible to avoid contributing to the second of these
problems; except when doing so would further exacerbate the first. With this as our guiding
principle, we adopt the following conventions.

Categorical variables will generally be written as blackboard-bold capital Latin letters:

𝔸 , 𝔹 , ℂ , etc.

Categorical constants will be written as small-cap abbreviations. We bow to convention
and name our categories after their objects rather than their arrows. Examples include:

Set ∶ the category of sets and functions
Cat ∶ the 2-category of small categories, functors and natural transformations

Members of categories such as objects and arrows will have their sorts indicated by the
infix typing relation symbol, “∶”, thusly:

• We express that A is an object in the category ℂ like this:

A ∶ ℂ

• We express that 𝑓 is an arrow in the category ℂ like this:

𝑓 ∶∶ ℂ

• In categories with higher categorical structure, we may continue this pattern in
the obvious way. In general, θ ∶ ⋯ ∶ ℂ (or θ ()∶ ℂ), indicates that θ is an 𝑛-cell of

ℂ.

138

APPENDIX A. CATEGORICAL NOTATION 139

For example, we can say that φ is a natural transformation (between functors
between small categories) like this:

φ ∶∶∶ Cat

Chaining of type declarations may be used as a shorthand. Thus

A ∶ ℂ ∶ Cat

is short for
ℂ ∶ Cat and A ∶ ℂ

Hom objects : We denote the object of morphisms between two objects of a category like
this:

ℂ (A → B)

or, if the category is obvious or irrelevant, like this:

A ⟶ B

Composition will always be indicated with an infix symbol. For normal order composition
we use “⋅” (as it is very unobtrusive) and for applicative order composition we use “∘”
(as it is very customary). These two types of composition may be read as “then” and
“after”, respectively. Thus, the composition,

....

can be expressed equally well by

𝑓 ⋅ 𝑔 or 𝑔 ∘ 𝑓

though we strongly prefer the former (first things first), and generally use the latter
only when there is an argument following the composition, to which it is being applied
(see below).

Higher composition : In 2-categories, we express so called “horizontal composition” of
2-cells (such as natural transformations) by “⋅⋅” (or “∘∘”). So, for example in situation,

....𝔸 ..𝔹 ..ℂ.......
⇓

.
⇓

.
⇓

.
⇓

APPENDIX A. CATEGORICAL NOTATION 140

the interchange law states:

(α ⋅ β) ⋅ ⋅(γ ⋅ δ) = (α ⋅ ⋅γ) ⋅ (β ⋅ ⋅δ) ∶ F ⋅ I ⟶ H ⋅ K

The rationale comes from the globular interpretation of higher categories. There,
ordinary composition of two 𝑛-cells is along their common (𝑛 − 1)-cell boundary,
while horizontal composition is along their common (𝑛−2)-cell boundary. In general,
composition of two 𝑛-cells along their common (𝑛−𝑘)-cell boundary is expressed with
“⋅…⋅ ” (or “()⋅ ”).

Implicit promotion of 𝑛-cells : For 𝑘 = 𝑗 + 1, a 𝑗-cell may be implicitly promoted to a
𝑘-cell as the identity 𝑘-cell on its underlying 𝑗-cell. By induction, promotion is well
defined for all 𝑘 > 𝑗. So, for example, with the diagram above,

(α ⋅ ⋅I) ⋅ (G ⋅ ⋅γ) = α ⋅ ⋅γ = (F ⋅ ⋅γ) ⋅ (α ⋅ ⋅J) ∶ F ⋅ I ⟶ G ⋅ J

Products, coproducts and exponentials , when they exist in a category, are written
infix as “×”, “+”, and “⊃”, respectively. × and + are left-associative, while ⊃ is
right-associative. Their relative precedence is as in ordinary arithmetic and all have
higher precedence than composition. For example, the iterated curry adjunction for
cartesian closed categories can be written

𝑓 ∶ A × B ×⋯ × Y ⟶ Z
λ()(𝑓) ∶ A ⟶ B ⊃⋯⊃ Y ⊃ Z

In particular, the category of functors from 𝔸 to 𝔹 and their natural transformations
is “𝔸 ⊃ 𝔹”. (you may know it as “𝔹𝔸” or “[𝔸 , 𝔹]”).

Initial and terminal objects , when they exist in a category, are denoted by “0” and “1”,
respectively (or sometimes by “⊥” and “⊤”, especially when the category is a preorder
or the intended interpretation is logic). For A ∶ ℂ,

ℂ (0 → A) = {¡ } and ℂ (A → 1) = {! }

Application of a function to its argument is indicated by juxtaposition, written with the
function symbol preceding its argument, and the argument optionally enclosed in
gratuitous parentheses (for emphasis). Application is left-associative and has higher
precedence than composition and product, coproduct or exponential formation. So,
for example if φ ∶ (ℂ ⊃ 𝔻) (F → G) then,

∀A , B ∶ ℂ . ∀𝑓 ∶ ℂ (A → B) . F(𝑓) ⋅ φ(B) = φ(A) ⋅ G(𝑓)

expresses the naturality of φ.

APPENDIX A. CATEGORICAL NOTATION 141

Structures comprising multiple components, such as adjunctions will be written as tuples,
with the intended interpretation depending on the sort of their structure. These tuples
are generally dependent and some of the components may be redundant. The purpose
of this notation is simply to act as a succinct way to bind names to the relevant
components for future reference. Identifiers ranging over them will be written in
script font, for example,

let 𝒜 ≔ (ℂ , 𝔻 , F , G , η , ε) be an adjunction...

Appendix B

Indexed Sequent Tactics in Coq

(*
* i n d e x e d _ t a c t i c s . v
*
* Coq t a c t i c s imp l emen t i ng t h e r u l e s o f ” i ndexed s e qu en t c a l c u l u s ”
* f o r i n t u i t i o n i s t i c f i r s t - o r d e r l o g i c
*)

(* u s e s un i code n o t a t i o n *)
Requ i r e Expor t Ut f8 .

(* ∀ t a c t i c s *)

L tac i s _ f o r a l l t :=
match t ype o f t w i th
| ∀ x : ?X , _ =>

match t ype o f X wi th
| Prop => f a i l 1 (* i t ’ s an im p l i c a t i o n *)
| _ => i d t a c (* i t ’ s a u n i v e r s a l q u a n t i f i c a t i o n *)
end

| _ => f a i l 1 t ” i s no t a u n i v e r s a l q u a n t i f i c a t i o n ”
end

.

L tac i s _ f o r a l l _ g o a l :=
match goa l w i th
| [| - ∀ x : ?X , _] =>

match t ype o f X wi th

142

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 143

| Prop => f a i l 1 (* i t ’ s an im p l i c a t i o n *)
| _ => i d t a c (* i t ’ s a u n i v e r s a l q u a n t i f i c a t i o n *)
end

| _ => f a i l 1 ” goa l i s no t a u n i v e r s a l q u a n t i f i c a t i o n ”
end

.

T a c t i c No t a t i o n ”∀R” :=
i s _ f o r a l l _ g o a l ; i n t r o

.

T a c t i c No t a t i o n ”∀Rs” :=
l e t r e c

s e l f := ∀R ; t r y s e l f
i n

s e l f
.

L t ac f o r a l l _ l e f t :=
fun

u n i v e r s a l _ h y p o t h e s i s o b l i g a t i o n _ v a r i a b l e r ema i n i n g _ h y p o t h e s i s
=>

i s _ f o r a l l u n i v e r s a l _ h y p o t h e s i s ;
match t ype o f u n i v e r s a l _ h y p o t h e s i s w i th
| ∀ x : ?X , _ =>

eva r (o b l i g a t i o n _ v a r i a b l e : X) ;
g e n e r a l i z e u n i v e r s a l _ h y p o t h e s i s ;
i n t r o r ema i n i n g _ h y p o t h e s i s ;
l e t

z := (e v a l u n f o l d o b l i g a t i o n _ v a r i a b l e i n o b l i g a t i o n _ v a r i a b l e)
i n

s p e c i a l i z e (r ema i n i n g _ h y p o t h e s i s z)
end

.

T a c t i c No t a t i o n ”∀L” c o n s t r (H) :=
i s _ f o r a l l H ;
match t ype o f H wi th
| ∀ x : ?X , _ =>

l e t
y := f r e s h x i n l e t H’ := f r e s h H”_”y

i n

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 144

f o r a l l _ l e f t H y H’
end

.

T a c t i c No t a t i o n ”∀Ls ” c o n s t r (H) :=
l e t r e c

s e l f := fun hyp =>
i s _ f o r a l l hyp ;
match t ype o f hyp wi th
| ∀ x : ?X , _ =>

l e t
y := f r e s h x i n l e t hyp ’ := f r e s h hyp ”_”y

i n
f o r a l l _ l e f t hyp y hyp ’ ; t r y (s e l f hyp ’ ; c l e a r hyp ’)

end
i n

s e l f H
.

(* ∃ t a c t i c s *)

L tac i s _ e x i s t s t :=
match t ype o f t w i th
| ∃ x : _ , _ => i d t a c
| _ => f a i l 1 t ” i s no t an e x i s t e n t i a l q u a n t i f i c a t i o n ”
end

.

L tac i s _ e x i s t s _ g o a l :=
match goa l w i th
| [| - ∃ x : _ , _] => i d t a c
| _ => f a i l 1 ” goa l i s no t an e x i s t e n t i a l q u a n t i f i c a t i o n ”
end

.

L tac e x i s t s _ l e f t :=
fun

e x i s t e n t i a l _ h y p o t h e s i s g e n e r i c _ v a r i a b l e r ema i n i n g _ h y p o t h e s i s
=>

i s _ e x i s t s e x i s t e n t i a l _ h y p o t h e s i s ;
e l im e x i s t e n t i a l _ h y p o t h e s i s ;

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 145

i n t r o g e n e r i c _ v a r i a b l e ;
i n t r o r ema i n i n g _ h y p o t h e s i s

.

T a c t i c No t a t i o n ”∃L” c o n s t r (H) :=
i s _ e x i s t s H ;
match t ype o f H wi th
| ∃ x : _ , _ =>

l e t
y := f r e s h x i n l e t H’ := f r e s h H”_”y

i n
e x i s t s _ l e f t H y H’ ; c l e a r H

end
.

T a c t i c No t a t i o n ”∃Ls ” c o n s t r (H) :=
l e t r e c

s e l f := fun hyp =>
i s _ e x i s t s hyp ;
match t ype o f hyp wi th
| ∃ x : ?X , _ =>

l e t
y := f r e s h x i n l e t hyp ’ := f r e s h hyp ”_”y

i n
e x i s t s _ l e f t hyp y hyp ’ ; c l e a r hyp ; t r y (s e l f hyp ’)

end
i n

s e l f H
.

T a c t i c No t a t i o n ”∃R” :=
i s _ e x i s t s _ g o a l ;
match goa l w i th
| [| - ∃ x : ?X , _] =>

l e t
y := f r e s h x

i n
eva r (y : X) ;
l e t

z := e v a l u n f o l d y i n y
i n

e x i s t s z

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 146

end
.

T a c t i c No t a t i o n ”∃Rs” :=
l e t r e c

s e l f := ∃R ; t r y s e l f
i n

s e l f
.

(* ∧ t a c t i c s *)

L tac i s _ a nd t :=
match t ype o f t w i th
| _ ∧ _ => i d t a c
| _ => f a i l 1 t ” i s no t a c o n j u n c t i o n ”
end

.

L tac i s _ a n d_go a l :=
match goa l w i th
| [| - _ ∧ _] => i d t a c
| _ => f a i l 1 ” goa l i s no t a c o n j u n c t i o n ”
end

.

T a c t i c No t a t i o n ”∧R” :=
i s _ a n d_go a l ; app ly con j

.

T a c t i c No t a t i o n ”∧Rs” :=
l e t r e c

s e l f := ∧R ; t r y s e l f
i n

s e l f
.

T a c t i c No t a t i o n ”∧L1” c o n s t r (H) :=
i s _ and H ;
l e t

H1 := f r e s h H

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 147

i n
g e n e r a l i z e H ; i n t r o H1 b e f o r e H ; app ly p r o j 1 i n H1

.

T a c t i c No t a t i o n ”∧L2” c o n s t r (H) :=
i s _ and H ;
l e t

H2 := f r e s h H
i n

g e n e r a l i z e H ; i n t r o H2 b e f o r e H ; app ly p r o j 2 i n H2
.

T a c t i c No t a t i o n ”∧L” c o n s t r (H) :=
i s _ and H ;
l e t

H1 := f r e s h H i n l e t H2 := f r e s h H
i n

g e n e r a l i z e H ; i n t r o H1 ; app ly p r o j 1 i n H1 ;
g e n e r a l i z e H ; i n t r o H2 ; app ly p r o j 2 i n H2 ;
move H2 b e f o r e H ; move H1 b e f o r e H ; c l e a r H

.

T a c t i c No t a t i o n ”∧Ls” c o n s t r (H) :=
l e t r e c

s e l f := fun hyp =>
i s _ and hyp ;
l e t

hyp1 := f r e s h hyp i n l e t hyp2 := f r e s h hyp
i n

g e n e r a l i z e hyp ; i n t r o hyp1 b e f o r e hyp ; app ly p r o j 1 i n hyp1 ;
g e n e r a l i z e hyp ; i n t r o hyp2 b e f o r e hyp1 ; app ly p r o j 2 i n hyp2 ;
t r y (s e l f hyp1) ; t r y (s e l f hyp2) ; c l e a r hyp

i n
s e l f H

.

(* ∨ t a c t i c s *)

L tac i s _ o r t :=
match t ype o f t w i th
| _ ∨ _ => i d t a c

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 148

| _ => f a i l 1 t ” i s no t a d i s j u n c t i o n ”
end

.

L tac i s _ o r _ g o a l :=
match goa l w i th
| [| - _ ∨ _] => i d t a c
| _ => f a i l 1 ” goa l i s no t a d i s j u n c t i o n ”
end

.

T a c t i c No t a t i o n ”∨L” c o n s t r (H) :=
i s _ o r H ;
l e t

H1 := f r e s h H i n l e t H2 := f r e s h H
i n

e l im H ;
[

i n t r o H1 b e f o r e H ; c l e a r H
|
i n t r o H2 b e f o r e H ; c l e a r H

]
.

T a c t i c No t a t i o n ”∨Ls” c o n s t r (H) :=
l e t r e c

s e l f := fun hyp =>
i s _ o r hyp ;
l e t

hyp1 := f r e s h hyp i n l e t hyp2 := f r e s h hyp
i n

e l im hyp ;
[

i n t r o hyp1 b e f o r e hyp ; c l e a r hyp ; t r y (s e l f hyp1)
|
i n t r o hyp2 b e f o r e hyp ; c l e a r hyp ; t r y (s e l f hyp2)

]
i n

s e l f H
.

T a c t i c No t a t i o n ”∨R1” :=

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 149

i s _ o r _ g o a l ; app ly o r _ i n t r o l
.

T a c t i c No t a t i o n ”∨R2” :=
i s _ o r _ g o a l ; app ly o r _ i n t r o r

.

L t ac o r _ i n t r o i nd :=
l e t r e c s e l f :=

fun n =>
match goa l w i th
| [| - _ ∨ _] =>

match e v a l compute i n n wi th
| O => f a i l 2 ” i ndex ou t o f bounds ”
| 1 => app ly o r _ i n t r o l
| S (S ?m) => app ly o r _ i n t r o r ; s e l f (S m)
| _ => f a i l 2 n ” i s no t a v a l i d i ndex ”
end

| _ =>
match e v a l compute i n n wi th
| 1 => i d t a c
| _ => f a i l 3 ” i ndex ou t o f bounds ”
end

end
i n

s e l f i nd
.

T a c t i c No t a t i o n ”∨R” c o n s t r (num) :=
o r _ i n t r o num

.

(* ⊤ t a c t i c s *)

No t a t i o n ”⊤” := True .

L t ac i s _ t r u t h t :=
match t ype o f t w i th
| ⊤ => i d t a c
| _ => f a i l 1 t ” i s no t t r u t h ”
end

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 150

.

L t ac i s _ t r u t h _ g o a l :=
match goa l w i th
| [| - ⊤] => i d t a c
| _ => f a i l 1 ” goa l i s no t t r u t h ”
end

.

T a c t i c No t a t i o n ”⊤R” :=
i s _ t r u t h _ g o a l ; c o n s t r u c t o r

.

T a c t i c No t a t i o n ”⊤L” c o n s t r (H) :=
i s _ t r u t h H ; f a i l ” no l e f t r u l e f o r t r u t h ”

.

(* ⊥ t a c t i c s *)

No t a t i o n ”⊥” := Fa l s e .

L t ac i s _ f a l s e h o o d t :=
match t ype o f t w i th
| ⊥ => i d t a c
| _ => f a i l 1 t ” i s no t f a l s e h o o d ”
end

.

L tac i s _ f a l s e h o o d _ g o a l :=
match goa l w i th
| [| - ⊥] => i d t a c
| _ => f a i l 1 ” goa l i s no t f a l s e h o o d ”
end

.

T a c t i c No t a t i o n ”⊥L” c o n s t r (H) :=
i s _ f a l s e h o o d H ; d e s t r u c t H

.

T a c t i c No t a t i o n ”⊥R” :=
i s _ f a l s e h o o d _ g o a l ; f a i l ” no r i g h t r u l e f o r f a l s e h o o d ”

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 151

.

(* ⊃ t a c t i c s *)

L tac i s _ i m p l i e s t :=
match t ype o f t w i th
| ?A → ?B => (* i t ’ s e i t h e r ∀ , ⊃ or o t h e r → *)

match t ype o f A wi th
| Prop =>

match t ype o f B wi th
| Prop => i d t a c (* i t ’ s an im p l i c a t i o n *)
| _ => f a i l 2 (* t h e c o n c l u s i o n i s no t a p r o p o s i t i o n *)
end

| _ => f a i l 1 (* i t ’ s a u n i v e r s a l q u a n t i f i c a t i o n *)
end

| _ => f a i l 1 t ” i s no t an im p l i c a t i o n ”
end

.

L tac i s _ im p l i e s _ g o a l :=
match goa l w i th
| [| - ?A → ?B] => (* i t ’ s e i t h e r ∀ , ⊃ or o t h e r → *)

match t ype o f A wi th
| Prop =>

match t ype o f B wi th
| Prop => i d t a c (* i t ’ s an im p l i c a t i o n *)
| _ => f a i l 2 (* t h e c o n c l u s i o n i s no t a p r o p o s i t i o n *)
end

| _ => f a i l 1 (* i t ’ s a u n i v e r s a l q u a n t i f i c a t i o n *)
end

| _ => f a i l 1 ” goa l i s no t an im p l i c a t i o n ”
end

.

T a c t i c No t a t i o n ”⊃R” :=
i s _ im p l i e s _ g o a l ; i n t r o

.

T a c t i c No t a t i o n ”⊃Rs” :=
l e t r e c

s e l f := ⊃R ; t r y s e l f

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 152

i n
s e l f

.

T a c t i c No t a t i o n ”⊃L” c o n s t r (H) :=
i s _ im p l i e s H ;
l e t

H’ := f r e s h H” ’”
i n

match t ype o f H wi th
| ?A → ?B => cu t B ; [i n t r o H’ b e f o r e H ; c l e a r H | app ly H]
end

.

T a c t i c No t a t i o n ”⊃Ls” c o n s t r (H) :=
l e t r e c

s e l f := fun hyp =>
i s _ im p l i e s hyp ;
l e t

hyp ’ := f r e s h hyp ” ’”
i n

match t ype o f hyp wi th
| ?A → ?B =>

cu t B ; [i n t r o hyp ’ b e f o r e hyp ; c l e a r hyp ; t r y (s e l f hyp ’) | app ly hyp]
end

i n
s e l f H

.

(* sub and i n i t *)

T a c t i c No t a t i o n ” sub ” hyp (x) c o n s t r (t) :=
(* x must be a r e f e r e n c e t o an e x i s t e n t i a l v a r i a b l e *)
l e t

x ’ := e v a l u n f o l d x i n x
i n

i s _ e v a r x ’ ;
f i r s t
[

(* i n c a s e t i s a l s o a r e f e r e n c e : *)
l e t t ’ := (e v a l u n f o l d t i n t) i n u n i f y x ’ t ’

APPENDIX B. INDEXED SEQUENT TACTICS IN COQ 153

|
(* o t h e rw i s e : *)
u n i f y x ’ t
|
f a i l 1 t ” c anno t be s u b s t i t u t e d f o r ” x

] ; c l e a r x
.

T a c t i c No t a t i o n ” i n i t ” c o n s t r (H) := e x a c t H .

(* big - s t e p r u l e f o r f o c u s i n g i n v e r s i o n phase *)

L tac e i g en :=
match goa l w i th
| [| - ⊤] => ⊤R
| [| - _ ∧ _] => ∧R
| [| - _ → _] => ⊃R
| [| - ∀ _ , _] => ∀R
| [H : ⊥ | - _] => ⊥L H
| [H : _ ∨ _ | - _] => ∨L H
| [H : ∃ _ , _ | - _] => ∃L H
| _ => f a i l 1 ” no e i g e n r u l e a p p l i e s ”
end

.

L tac e i g e n s :=
l e t r e c

s e l f := e i g en ; t r y s e l f
i n

s e l f
.

Bibliography

[ALM09] Gianluca Amato, James Lipton, and Robert McGrail. “On the Algebraic Struc-
ture of Declarative Programming Languages”. In: Theoretical Computer Science
410.46 (2009), 4626–4671.

[And92] Jean-Marc Andreoli. “Logic Programming with Focusing Proofs in Linear Logic”.
In: Journal of Logic and Computation 2.3 (1992), pp. 207–347.

[And01] Jean-Marc Andreoli. “Focussing and Proof Construction”. In: Annals of Pure
and Applied Logic 107 (2001).

[AM89] Andrea Asperti and Simone Martini. “Projections Instead of Variables: a cat-
egory theoretic interpretation of logic programs”. In: International Conference
for Logic Programming. MIT Press, 1989.

[Awo10] Steve Awodey. Category Theory. second edition. Oxford Logic Guides 49. Oxford
University Press, 2010.

[AB09] Steve Awodey and Andrej Bauer. Introduction to Categorical Logic. lecture notes.
2009. url: http://www.andrew.cmu.edu/user/awodey/catlog/.

[BS09] John Baez and Mike Stay. “Physics, Topology, Logic and Computation: A
Rosetta Stone”. 2009. url: http://arxiv.org/abs/0903.0340.

[BW98] Michael Barr and Charles Wells. Category Theory for Computing Science. third
edition. Centre de Recherches Mathematiques, 1998.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program De-
velopment. Texts in Theoretical Computer Science. Springer, 2004.

[CP08] Kaustuv Chaudhuri and Frank Pfenning. A Logical Characterization of Forward
and Backward Chaining in the Inverse Method. Tech. rep. Carnegie Mellon Uni-
versity, 2008.

[Coq12] Coq Development Team. The Coq Proof Assistant Reference Manual (version
8.4). INRIA, 2012. url: http://coq.inria.fr/documentation.

[CH88] Thierry Coquand and Gérard Huet. “The Calculus of Constructions”. In: Infor-
mation And Computation 76 (1988), pp. 95–120.

154

http://www.andrew.cmu.edu/user/awodey/catlog/
http://arxiv.org/abs/0903.0340
http://coq.inria.fr/documentation

BIBLIOGRAPHY 155

[CP90] Thierry Coquand and Christine Paulin-Mohring. “Inductively Defined Types”.
In: Proceedings of Colog. Ed. by Per Martin-Löf and G. Mints. Vol. 417. Lecture
Notes in Computer Science. Springer-Verlag, 1990.

[Dou93] Daniel Dougherty. “Some Lambda Calculi with Categorical Sums and Products”.
In: Rewriting Techniques and Applications. Vol. 690. Lecture Notes in Computer
Science. Springer-Verlag, 1993, pp. 137–151.

[Dum91] Michael Dummett. The Logical Basis of Metaphysics. The William James Lec-
tures, 1976. Harvard University Press, 1991.

[DP94] Roy Dyckhoff and Luís Pinto. “Uniform Proofs and Natural Deductions”. In:
International Conference on Automated Deduction. 1994.

[DP96] Roy Dyckhoff and Luís Pinto. A Permutation-Free Sequent Calculus for Intu-
itionistic Logic. Tech. rep. St. Andrews University, 1996.

[DP99] Roy Dyckhoff and Luís Pinto. “Proof Search in Constructive Logics”. In: Logic
Colloquium 1997. Ed. by S. Barry Cooper and John K. Truss. London Mathe-
matical Society Lecture Notes 258. Association for Symbolic Logic. Cambridge
University Press, 1999.

[FFL03] Stacy Finkelstein, Peter Freyd, and James Lipton. “A New Framework for
Declarative Programming”. In: Theoretical Computer Science 300 (2003), pp. 91–
160.

[Gal93] Jean Gallier. “Constructive Logics. Part I: A Tutorial on Proof Systems and
Typed λ-Calculi”. In: Theoretical Computer Science 110.2 (1993).

[Gen35] Gerhard Gentzen. “Untersuchungen Über das Logische Schließen”. In: Mathema-
tische Zeitschrift 39 (1935), pp. 176–210, 405–431.

[Gha95a] Neil Ghani. “Adjoint Rewriting”. PhD thesis. University of Edinburgh, 1995.

[Gha95b] Neil Ghani. “βη-Equality for Coproducts”. In: Typed Lambda Calculi and Appli-
cations. Vol. 902. Lecture Notes in Computer Science. 1995, pp. 171–185.

[Gir72] Jean-Yves Girard. “Interprétation Fonctionnelle et Élimination des Coupures de
l’Arithmétique d’Ordre Supérieur”. PhD thesis. Université de Paris VII, 1972.

[Gir87] Jean-Yves Girard. “Linear Logic”. In: Theoretical Computer Science 50 (1987),
pp. 1–101.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. Vol. 7. Cam-
bridge Tracts in Theoretical Computer Science. Cambridge University Press,
1989.

[HM92] Victor Harnik and Michael Makkai. “Lambek’s Categorical Proof Theory and
Läuchli’s Abstract Realizability”. In: Journal of Symbolic Logic 57.1 (1992),
pp. 200–230.

BIBLIOGRAPHY 156

[Har60] Ronald Harrop. “Concerning Formulas of the Types A → B ∨ C , A → (E𝑥)B(𝑥)”.
In: Journal of Symbolic Logic 25.1 (1960), pp. 27–32.

[Her95] Hugo Herbelin. “A λ-Calculus Structurally Isomorphic to Gentzen-style Sequent
Calculus Structure”. In: Proceedings of the 1994 workshop Computer Science Logic.
Vol. 933. Lecture Notes in Computer Science. Springer, 1995, pp. 61–75.

[How80] W. A. Howard. “The Formulae-as-Types Notion of Construction”. In: To H. B.
Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism. Ed. by
J.P. Seldin and J. R. Hindley. Academic Press, 1980, pp. 479–490.

[Jac99] Bart Jacobs. Categorical Logic and Type Theory. Vol. 141. Studies in Logic. El-
sevier, 1999.

[JG95] C. Barry Jay and Neil Ghani. “The Virtues of Eta-Expansion”. In: Journal of
Functional Programming 5.2 (1995), pp. 135–154.

[KP96] Yoshiki Kinoshita and John Power. “A Fibrational Semantics for Logic Pro-
grams”. In: Lecture Notes in Computer Science 1050 (1996).

[Kle52] Stephen Kleene. “Permutability of Inferences in Gentzen’s Calculi LK and LJ”.
In: Memoirs of the American Mathematical Society 10 (1952), pp. 1–26.

[Kle62] Stephen Kleene. “Disjunction and Existence Under Implication in Elementary
Intuitionistic Formalisms”. In: Journal of Symbolic Logic 27.1 (1962), pp. 11–18.

[Kri05] Ayalur Krishnan. “Universal Quantifiers in Logic Programming via Indexed Cat-
egories”. PhD thesis. Wesleyan University, 2005.

[Lam68] Joachim Lambek. “Deductive Systems and Categories I”. In: Mathematical Sys-
tems Theory. Springer-Verlag, 1968.

[Lam69] Joachim Lambek. “Deductive Systems and Categories II”. In: Lecture Notes in
Mathematics 86 (1969), pp. 76–122.

[Lam72] Joachim Lambek. “Deductive Systems and Categories III”. In: Lecture Notes in
Mathematics 274 (1972), pp. 57–82.

[LS86] Joachim Lambek and Philip Scott. Introduction to Higher Order Categorical
Logic. Cambridge University Press, 1986.

[Law69] F. William Lawvere. “Adjointness in Foundations”. In: Dialectica 23 (1969).

[Law70] F. William Lawvere. “Equality in Hyperdoctrines and the Comprehension Schema
as an Adjoint Functor”. In: Proceedings of the New York Symposium on Applica-
tions of Categorical Logic. Americal Mathematical Society, 1970.

[Llo84] J. W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[Mac98] Saunders Mac Lane. Categories for the Working Mathematician. second edition.
Graduate Texts in Mathematics. Springer, 1998.

BIBLIOGRAPHY 157

[MM92] Saunders Mac Lane and Ieke Moerdijk. Sheaves in Geometry and Logic. Springer-
Verlag, 1992.

[Mak93a] Michael Makkai. “The Fibrational Formulation of Intuitionistic Predicate Logic
I: completeness according to Gödel, Kripke, and Läuchli. I.” In: Notre Dame
Journal Formal Logic 34.3 (1993), pp. 334–377.

[Mak93b] Michael Makkai. “The Fibrational Formulation of Intuitionistic Predicate Logic
I: completeness according to Gödel, Kripke, and Läuchli. II.” In: Notre Dame
Journal Formal Logic 34.4 (1993), pp. 471–498.

[Mar84] Per Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theory. Bibliopolis,
1984.

[McG99] Robert McGrail. “Monads, Predicates and Categorical Logic Programming”.
PhD thesis. Wesleyan University, 1999.

[Mel09] Paul-André Melliès. “Categorical Semantics of Linear Logic”. In: Interactive
Models of Computation and Program Behaviour. Société Mathématique de France,
2009.

[Mil89a] Dale Miller. “A Logical Analysis of Modules in Logic Programming”. In: Journal
of Logic Programming 6 (1989), pp. 79–108.

[Mil89b] Dale Miller. “Lexical Scoping as Universal Quantification”. In: Sixth International
Conference on Logic Programming. MIT Press, 1989.

[Mil+91] Dale Miller et al. “Uniform Proofs as a Foundation for Logic Programming”. In:
Annals of Pure and Applied Logic 51 (1991).

[Nad93] Gopalan Nadathur. “A Proof Procedure for the Logic of Hereditary Harrop
Formulas”. In: Journal of Automated Reasoning 11 (1993).

[NM95] Ulf Nilsson and Jan Małuszyński. Logic, Programming and Prolog. second edition.
John Wiley and Sons, 1995. url: http://www.ida.liu.se/~ulfni/lpp.

[nla] nlab contributers. Principle of Equivalence. url: http : / / ncatlab . org / nlab / show /
principle+of+equivalence (visited on 2012).

[Pfe09] Frank Pfenning. Constructive Logic. lecture notes. 2009. url: http://www.cs.cmu.
edu/~fp/courses/15317-f09/.

[Pot77] Garrel Pottinger. “Normalization as the Homomorphic Image of Cut-Elimination”.
In: Annals of Mathematical Logic 12 (1977), pp. 323–357.

[Pra65] Dag Prawitz. Natural Deduction: A Proof-Theoretical Study. Stockholm Studies
in Philosophy 3. Almqvist and Wiksell, 1965.

[Pra71] Dag Prawitz. “Ideas and Results in Proof Theory”. In: Second Scandinavian Logic
Symposium. Ed. by J. E. Fenstad. North-Holland, 1971, pp. 235–307.

http://www.ida.liu.se/~ulfni/lpp
http://ncatlab.org/nlab/show/principle+of+equivalence
http://ncatlab.org/nlab/show/principle+of+equivalence
http://www.cs.cmu.edu/~fp/courses/15317-f09/
http://www.cs.cmu.edu/~fp/courses/15317-f09/

BIBLIOGRAPHY 158

[See79] Robert Seely. “Weak Adjointness in Proof Theory”. In: Lecture Notes in Mathe-
matics 753 (1979), pp. 697–701.

[See83] Robert Seely. “Hyperdoctrines, Natural Deduction and the Beck Condition”. In:
Zeitscrift für Mathematische Logik und Grundlagen der Mathematik (1983).

[Tay99] Paul Taylor. Practical Foundations of Mathematics. Cambridge Studies in Ad-
vanced Mathematics 59. Cambridge University Press, 1999.

[TS00] Anne Troelstra and Helmut Schwichtenberg. Basic Proof Theory. second edition.
Cambridge Tracts in Theoretical Computer Science 43. Cambridge University
Press, 2000.

[Zuc74] J Zucker. “The Correspondence Between Cut-Elimination and Normalization”.
In: Annals of Mathematical Logic 7 (1974), pp. 1–112, 113–155.

Index

β
-normal form, 16
-reduction, 12

η
-expansion, 13

active formula, 89, 124
adjoint complement, 19, 60
adjoint functor

left, 19
right, 19

adjunction, 18
counit, 19
natural hom isomorphism, 18
triangle equations, 23
unit, 19
universal property of counit, 19, 58,

80
universal property of unit, 19, 59, 80
zig-zag equations, 23

adjunction laws, 23
anderrule, 91, 100, 125
andervariable, see obligation variable
antecedent, 87
assumption

discharged, 8
local, 8

asynchronous rule, 124, 125
axiom, 7, 127

backward-chaining, 108, 115, 117, 124

Beck-Chevalley condition, 26, 48
bicartesian closed category, 30, 41

cartesian category, 31
cartesian closed category, 31
cartesian context, 83
cartesian logic, 83
category of adjunctions, 25
category of elements, 35
chirality, 58
clause

definite, 110
disjunctive, 110
generalized implicative definite, 117
head, 110
implicative, 110
negative, 110
tail, 110

comonad, 26, 45, 83
adjoint resolution, 28
associative law, 26
comultiplication, 27
counit, 27
counit law, 26, 84
Eilenberg–Moore resolution, 28
Kleisli resolution, 29

completeness
all-proof, 131
answer, 132
normal-proofs, 132

159

INDEX 160

provability, 131
computation principle, 12
computed answer, 113, 114
computed substitution, 113, 114
confluence, 13
connective, 8
consequence relation, 11, 41
conservativity, 83
constructive logic, 118
constructive sequent, 121

antecedent, 121
goal formula, 121
program formula, 121
succedent, 121

context
empty, 11
global, 8
internalization, 60
local, 9
propositional, 11, 41, 87
typing, 11, 42, 87
weakening, 43

context comonad, 83, 90
context-propagating derivation, 84
contextual derivation, 84
Coq

proof mode, 106
tactic, 106

curry adjunction, 31, 70
Curry-Howard correspondence, 2, 12, 13,

106

dependence, 11, 34, 43, 46
derivation, 8

assumption, 8, 60
end-formula, 8, 60
failed, 113
frontier, 8
identity, 8, 60

trunk, 60, 80
diagonal functor, 31, 61, 63
diagram

pasting, 23
string, 23

disjunction property, 118
strong, 119

distributive law, 31, 59, 65, 92
duality, 20, 24
dummy variable, 44, 47

eigenrule, 90, 100, 125
eigenvariable, 11, 89
elimination rule, 8, 58
existence property, 118

strong, 120
existential image, 53
existential variable, 106

falsehood property, 119
strong, 120

fibration, 34
finite coproduct, 31
finite product, 31
focused phase, 124
focusing, 124
Frobenius reciprocity, 33, 59, 76, 97
function symbol, 43
functoriality, 38

generic parameter, see eigenvariable
generic variable, see also eigenvariable, 100
goal formula, 116
guarded quantification, 53

harmony of a connective, 12
having quantifiers, 48, 51
Herbrand base, 110
Herbrand interpretation, 56
hereditarily Harrop

goal formula, 116

INDEX 161

program formula, 116
Heyting algebra, 41, 52
Heyting category, 56
Horn

clause, 110
goal formula, 111
program formula, 110

hyperdoctrine, 49
free, 51, 60, 80

hypothetical judgement, 8, 58

indexed category, 35, 46
base, 35
fiber, 35
indexing functor, 35
reindexing functor, 35

indexed functor, 38
indexed sequent calculus, 101
indexed set, 34
inference rule, 7

conclusion, 7, 87
invertible, 7
premise, 7, 87

inferences
adjacent, 126
non-nested, 126
permutable, 127
strictly commuting, 127

initial sequent, 87
input-output semantics, 113, 132
interchangeable inferences, 59
interpretation

free, 40, 46, 47, 51
generic, 40, 80
of a sequent, 89
of atomic types, 42
of first-order logic, 50, 79
of function symbols, 43
of predicates, 47

of propositional contexts, 41
of propositions, 41
of relation symbols, 46
of terms, 44
of typing contexts, 43
sound, 39, 79

introduction rule, 8, 58
inverse image, 52
inversion phase, 124

Kleisli category, 29, 45, 84
Kleisli extension, 30, 84

least Herbrand model, 111
left connective, 58, 119
left proposition, 119
linear logic, 83
literal, 110

negative, 110
positive, 110

local completeness, 12
local expansion, 12, 58, 81
local reduction, 12, 58, 81
local soundness, 12
logic variable, 77, 100, 106, 115

major premise, 8
mate, 26

left, 26
right, 26

minor premise, 8
monad, 27

natural deduction, 8
neutral sequent, 124
non-ground semantics, 56
nondeterminism

essential, 131
inessential, 131

normal form, 13, 17
normalization, 13

INDEX 162

strong, 13

obligation variable, 100, 115

passive formula, 89
permutation conversion, 13, 58, 81
polarity

negative, 124
positive, 124

polynomial category, 84
pragmatism, 12, 58
Prawitz translation, 89
predicate, 42, 46
presheaf, 55

category, 55
primitive inference, 7
principal formula, 89, 94, 124
principle of equivalence, 37, 50
program, 110
program formula, 116
proof, 8, 59, 87, 109
proposition in context, 47, 96, 97
pseudofunctor, 37
pure derivation, 84
pure proposition, 84

reflexivity, 136
relation symbols, 46
representable functor, 55
representation principle, 12
representative, 9, 73, 89

generic, 11
right connective, 58, 119
right proposition, 119

search instruction, 116
search strategy, 109
selected goal, 113
selected program clause, 113
sequent, 87
sequent calculus, 87

sequent calculus rules
logical, 87
structural, 87

sieve, 55
sieve hyperdoctrine, 55
single omission, 43, 48, 72, 75
single substitution, 44, 73, 77
SLD-resolution, 110, 112
soundness for syntax, 38
strictness, 38, 49
structural rule

contraction, 87, 90, 109
cut, 87, 90, 109
init, 87, 90, 109
weakening, 87, 90, 109

subformula property, 98
subfunctor, 55
subset hyperdoctrine, 52
substitution lemma, 45, 102
succedent, 87
synchronous rule, 124, 125

term in context, 44, 96, 97
terminal category, 31, 67, 68
type, 42
typing judgement, 8, 87

unification, 77
unifier, 113
uniform proof, 115, 116
universal image, 53

verificationism, 12, 58

witness, 9, 77, 89
generic, 11

Yoneda
embedding, 55
lemma, 55
principle, 22, 32

	Abstract
	Contents
	Introduction
	Context
	Methodology and Results
	Outline

	Harmony in Gentzen's Proof Theory
	Derivations in Gentzen Systems
	Natural Deduction
	Harmony of the Connectives

	Categorical Constructions
	Adjunctions
	Comonads
	Bicartesian Closed Categories
	Indexed Categories

	Categorical Intuitionistic First-Order Logic
	The Categorical Interpretation of Logic
	Interpreting the Propositional Connectives
	Interpreting the Term Language
	Interpreting Predicates
	Interpreting Quantification
	The Hyperdoctrine Interpretation
	Posetal Hyperdoctrines

	Natural Deduction by Adjunction
	Conjunction
	Disjunction
	Truth
	Falsehood
	Implication
	Universal Quantification
	Existential Quantification
	Genericity of Free Hyperdoctrines

	Categories for Cartesian Logics
	Meta-Theoretic Considerations
	The Kleisi Category Prop Γ
	The Polynomial Category Prop [x]

	Categorical Sequent Calculus
	Intuitionistic Sequent Calculus
	Sequent Calculus in Hyperdoctrines
	An Indexed Sequent Calculus
	Indexed Sequent Tactics in Coq

	Proof Search Strategies
	SLD-Resolution for Horn Logic
	Uniform Proof for Hereditarily Harrop Logic
	Constructive Sequents
	Focused Proof Search

	Conclusion, Related and Future Work
	Categorical Notation
	Indexed Sequent Tactics in Coq
	Bibliography
	Index

