
ZU064-05-FPR paper 30 September 2016 14:20

Under consideration for publication in J. Functional Programming 1

Homotopical Patch Theory

CARLO ANGIULI∗†
Carnegie Mellon University
cangiuli@cs.cmu.edu

EDWARD MOREHOUSE∗†
Carnegie Mellon University

edmo@cs.cmu.edu

DANIEL R. LICATA†
Wesleyan University

dlicata@wesleyan.edu

ROBERT HARPER∗†
Carnegie Mellon University

rwh@cs.cmu.edu

Abstract

Homotopy type theory is an extension of Martin-Löf type theory, based on a correspondence with
homotopy theory and higher category theory. In homotopy type theory, the propositional equality
type is proof-relevant, and corresponds to paths in a space. This allows for a new class of datatypes,
called higher inductive types, which are specified by constructors not only for points but also for
paths. In this paper, we consider a programming application of higher inductive types. Version control
systems such as Darcs are based on the notion of patches—syntactic representations of edits to a
repository. We show how patch theory can be developed in homotopy type theory. Our formulation
separates formal theories of patches from their interpretation as edits to repositories. A patch theory
is presented as a higher inductive type. Models of a patch theory are given by maps out of that
type, which, being functors, automatically preserve the structure of patches. Several standard tools of
homotopy theory come into play, demonstrating the use of these methods in a practical programming
context.

∗ This research was sponsored in part by the National Science Foundation under grant number
CCF-1116703. The views and conclusions contained in this document are those of the author
and should not be interpreted as representing the official policies, either expressed or implied, of
any sponsoring institution, the U.S. government or any other entity.

† This material is based on research sponsored in part by The United States Air Force Research
Laboratory under agreement number FA9550-15-1-0053. The U.S. Government is authorized
to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright
notation thereon. The views and conclusions contained herein are those of the authors and should
not be interpreted as necessarily representing the official policies or endorsements, either expressed
or implied, of the United States Air Force Research Laboratory, the U.S. Government or Carnegie
Mellon University.

ZU064-05-FPR paper 30 September 2016 14:20

2 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

1 Introduction

Martin-Löf’s intensional type theory (MLTT) and its descendants are the basis of proof as-
sistants such as Agda (Norell, 2007) and Coq (Coq Development Team, 2015). Homotopy
type theory is an extension of MLTT based on a correspondence with homotopy theory
and higher category theory (Hofmann & Streicher, 1998; Voevodsky, 2006; Gambino &
Garner, 2008; Garner, 2009; Warren, 2008; Awodey & Warren, 2009; Lumsdaine, 2009;
van den Berg & Garner, 2011; Kapulkin et al., 2012). In homotopy theory, one studies
topological spaces by way of their points, paths (between points), homotopies (paths or
continuous deformations between paths), homotopies between homotopies (paths between
paths between paths), and so on. In homotopy type theory, a space corresponds to a type
A. Points of a space correspond to elements a,b : A. Paths in a space are represented
by elements of the identity type (propositional equality), which we notate p : a =A b.
Homotopies between paths p and q correspond to elements of the iterated identity type
p=a=Ab q. Moreover, one can define all the path operations considered in homotopy theory,
including identity paths refl : a = a (reflexivity of equality), inverse paths ! p : b = a when
p : a = b (symmetry of equality), and composition of paths q ◦ p : a = c when p : a = b
and q : b = c (transitivity of equality), as well as homotopies relating these operations (for
example, refl◦ p = p), homotopies relating those homotopies, and so forth.

This correspondence has suggested several extensions to type theory. One is Voevod-
sky’s univalence axiom (Voevodsky, 2006; Kapulkin et al., 2012), which describes the
path structure of the type universe (the type of small types). Another is higher inductive
types (Lumsdaine & Shulman, 2013; Shulman, 2011; Lumsdaine, 2011), a new class of
datatypes specified by constructors not only for points but also for paths. Higher inductive
types were originally introduced to permit the type-theoretic definition of basic topological
spaces such as circles and spheres, and have had significant applications in a line of
work on using homotopy type theory to write computer-checked proofs of theorems from
homotopy theory (Licata & Shulman, 2013; Univalent Foundations Program, 2013; Licata
& Brunerie, 2013; Licata & Finster, 2014; Hou, 2014; Licata & Brunerie, 2015; Cavallo,
2015).

The computational interpretation of homotopy type theory as a programming language
is a subject of active research, though some special cases have been solved, and work in
progress is promising (Licata & Harper, 2012; Barras et al., 2015; Shulman, 2013; Bezem
et al., 2013; Cohen et al., 2016; Altenkirch & Kaposi, 2015; Polonsky, 2015). The main
lesson of this work is that, in homotopy type theory, proofs of equality have computational
content, and can influence how a program runs. This suggests investigating whether there
are programming applications of computationally relevant equality proofs. Some prelimi-
nary applications have been investigated. For example, Licata & Harper (2011) apply ideas
related to homotopy type theory to modeling variable binding. Altenkirch (2014) shows
that containers (Abbott et al., 2005) in homotopy type theory can be used to represent more
data structures than in MLTT, such as sets and bags. However, at present, the programming
applications are less developed than the mathematical applications.

In this paper, we present an example of using homotopy type theory to model patch
theory (Jacobson, 2009; Houston, 2012; Mimram & Di Giusto, 2013), the abstract study
of version control systems. Intuitively, a patch is a formal representation of a change to a

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 3

repository. A patch (for example, “delete file f ”) applies to a class of repositories (those in
which the file f exists), and results in another class of repositories (those in which the file f
no longer exists). Such classifications of repositories are called patch contexts, and serve as
types for patches. Patches are closed under identity (a no-op), composition (sequencing),
and inverses (undo). In addition, patches are subject to equations called patch laws, which
address both general (e.g., composition is associative) and domain-specific considerations
(e.g., that the order of edits to independent lines of a file can be swapped).

Then a patch theory1 is a collection of such patch contexts, patches, and patch laws,
which together abstractly characterize a language of patches. Any correct implementation
of those patches must contain a set of repositories for each patch context, functions between
those repositories for each patch, and equations between those functions for each patch law.

Our representation of patch theory is inspired by functorial semantics in the sense of
Lawvere (1963)—in which the axioms of an algebraic theory are represented as a category,
and any instance of that algebraic theory is precisely a structure-preserving functor out
of that category. Using homotopy type theory, we will represent patch theories as higher
inductive types whose points are patch contexts, whose paths are patches, and whose
paths between paths are patch laws; and interpretations of a patch theory as functions
out of its higher inductive type. Because functions in homotopy type theory always respect
path structure, this guarantees that interpretations are sound for their patch theory, and in
particular, that interpretations respect patch laws.

We will consider interpretations such as patch interpreters (sending patches to functions
on repositories), patch optimizers (consolidating a sequence of patches into a more direct,
equivalent sequence), and patch histories (maintaining a list of the patches themselves).
That such functions—and others, including merging—are definable underscores the fact
that paths in homotopy type theory are proof-relevant, i.e., that we can distinguish, manip-
ulate, and extract computational content from them, unlike ordinary notions of equality.

Our work shows how to apply standard concepts from homotopy theory in a practical
programming setting. For example, the first patch theory we discuss is in fact the circle.
A key problem in homotopy theory is to algebraically characterize the paths in a space
using what is called a homotopy group; similarly, sometimes we characterize an identity
type (namely, the patches of a patch theory) using a derived induction principle, in order
to define operations on those paths (such as merging). We hope that this paper will make
homotopy type theory more accessible to the functional programming community, so that
programmers can begin to consider its applications.

Homotopy type theory is still under development, and one of our goals in this paper
is to guide future work on it by providing an extended programming application. We use
an informal Agda-like concrete syntax, including datatype and pattern-matching syntax for
higher inductive types, and marking implicit arguments with braces {−}. (This is similar to
the informal type theory employed in the book Homotopy type theory (Univalent Founda-
tions Program, 2013), but with a more programming-oriented notation.) Our development

1 There is an unfortunate terminological coincidence here: “Patch theory” means “the study of
patches,” just as “group theory” is the study of groups. “A patch theory” means “a specific language
of patches,” just as “a theory in first-order logic” is a specific collection of terms and formulae.

ZU064-05-FPR paper 30 September 2016 14:20

4 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

using this syntax could be translated to Agda or Coq, using techniques to simulate higher
inductives, but we have not yet implemented the examples in this paper in a proof assistant.

Because a computational interpretation of homotopy type theory is work in progress,
there is no complete operational semantics that can evaluate the programs in this paper.
However, we will use a notion of computation-up-to-paths—based on existing work on this
topic (Licata & Harper, 2012; Shulman, 2013; Cohen et al., 2016; Altenkirch & Kaposi,
2015)—in order to compute with the programs we define in this paper.

In Section 2, we provide a brief introduction to homotopy type theory and higher induc-
tive types. In Section 3, we review patch theory, and describe our approach to representing
it in homotopy type theory. In Sections 4 through 8, we discuss successively more complex
patch theories.

Section 4 is the simplest case: a patch theory with a single patch context and no patch
laws. In Section 5 we add patch laws. In Section 6, we consider a theory requiring multiple
patch contexts, because not all patches are universally applicable. The theory in Section 7
has both patch laws and multiple patch contexts. Finally, in Section 8, we consider a patch
theory of text files, requiring both patch laws and multiple patch contexts.

A preliminary version of this paper appeared in the Proceedings of the 2014 Interna-
tional Conference on Functional Programming. We have added two more patch theories
(Sections 6 and 7) in order to clarify the concepts needed in Section 8, and discuss some
results that were obtained after the final conference version was submitted.

2 Basics of Homotopy Type Theory

In this section, we will review some basic definitions of homotopy type theory. Various
formulations of homotopy type theory are currently in development; in this paper, we
will use the standard version appearing in Homotopy type theory (Univalent Foundations
Program, 2013), henceforth “the HoTT Book,” because we expect that any future versions
of homotopy type theory will be able to interpret it.

2.1 Paths

In type theory, there are two notions of equality. Definitional equality is a proof-irrelevant
judgement relating two terms. It is a congruence containing β -like reductions expressing
that elimination is post-inverse to introduction—for example, (λx � e) e’ and [e’/x]e
are definitionally equal. Uses of definitional equality are not marked in the proof term or
program: if e has type A, then e also has any other type A’ that is definitionally equal to A.
On the other hand, propositional equality is a proof-relevant type relating two terms; it is
often also called the identity type, which we write e = e’. Uses of propositional equality
are explicitly marked in the program: if e has type A and p is an element of the identity
type A = A’, then coe p e has type A’.

In homotopy type theory, the identity type is specified by its introduction rule, called
reflexivity, and elimination rule, known as path induction or J. Elements of the identity
type behave like paths in a space or morphisms in a groupoid, in the sense that one can
define a constant path refl (witnessing the reflexivity of equality), composition of paths

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 5

q ◦ p (witnessing the transitivity of equality)2, and path inversion ! p (witnessing the
symmetry of equality), among other operations. Moreover, there are paths between paths,
or homotopies, which are represented by proofs of equality in identity types. For example,
there are homotopies expressing that the path operations satisfy the group(oid) laws:

refl ◦ p = p
p ◦ refl = p
(r ◦ q) ◦ p = r ◦ (q ◦ p)
(! p) ◦ p = refl
p ◦ (! p) = refl

Any simply-typed function f : A � B determines a function

ap f : x = y � f x = f y

that takes paths x =A y to paths f x =B f y. Logically, this expresses that propositional
equality is a congruence; homotopically, it expresses that any function has an action on
paths; and categorically, it expresses that functions are functors, preserving the path struc-
ture of types. The function ap f preserves the path operations, in the sense that there are
homotopies

ap f (refl {x}) = refl {f x}
ap f (! p) = ! (ap f p)
ap f (q ◦ p) = (ap f q) ◦ (ap f p)

It is useful to characterize types based on how far “up” their path structure extends. A
type A is a set iff any two parallel paths in A are equal—i.e., for any two elements m,n : A,
and any two proofs p,q : m = n, there is a path p = q. Similarly, a type is a 1-groupoid
iff any two paths between parallel paths are equal. A type is a mere proposition iff any two
elements are equal. A type is contractible iff it is a mere proposition and moreover it has
an element, that is, it has a unique element up to homotopy.

2.2 Univalence

Writing Type for a type of (small) types, Voevodsky’s univalence axiom states that, for
sets A and B, the paths A =Type B are given by bijections between A and B.3 That is, define
Bijection A B to be the type of quadruples

(f : A � B, g : B � A,
p : (x : A) � g (f x) = x, q : (y : B) � f (g y) = y)

consisting of two functions that are mutually inverse up to paths. Then one consequence of
univalence is that there is a function

ua : Bijection A B � A = B

2 Composition is in function-composition, or applicative, order, (q:y=z) ◦ (p:x=y) : x=z.
3 For types that are not sets, univalence requires a notion of equivalence that generalizes bijection.

However, here we will only use it for sets.

ZU064-05-FPR paper 30 September 2016 14:20

6 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

which says that a bijection between A and B determines a path between A and B. The force
of this is to stipulate that all constructions respect bijection; for example, if C[X] is a
parametrized type (e.g. C could be List, Tree, Monoid, etc.), then given a bijection b :
Bijection A B, we have

ap C (ua b) : C[A] = C[B]

which is a bijection between C[A] and C[B]. In plain MLTT, one would need to spell out
how a bijection between types lifts to a bijection on lists or monoids over those types; with
univalence, this lifting is given by a new generic program in the form of ap. This generic
program is one of the sources of computational applications of homotopy type theory.

We can define the identity (reflb), inverse (!b), and composition (_◦b_) of bijections di-
rectly (focusing on the underlying functions, and where f2 . f1 is (λx � f2(f1(x)))):

reflb : Bijection A A
reflb = ((λx � x), (λx � x), ...)

!b : Bijection A B � Bijection B A
!b (f,g,p,q) = (g,f,q,p)

◦b : Bijection B C � Bijection A B � Bijection A C
(f2,g2,p2,q2) ◦b (f1,g1,p1,q1) = (f2 . f1, g1 . g2, ...)

Applying path operations to univalence is homotopic to applying the corresponding oper-
ations to bijections:

refl = ua reflb
! (ua b) = ua (!b b)
ua b2 ◦ ua b1 = ua (b2 ◦b b1)

When p : A = B, we write coe p : A � B for the function, defined by identity type
elimination, that “coerces” along the path p. The function coe is functorial, in the sense
that

coe refl x = x
coe (q ◦ p) x = coe q (coe p x)

coe p is a bijection, with inverse coe !p; we write coeBiject p : Bijection A B
when p : A = B. The univalence axiom additionally asserts that there is a computation
rule

coe (ua (f,g,p,q)) x = f x

That is, coercing along a path constructed by univalence applies the given bijection. Be-
cause ! (ua (f,g,p,q)) = ua (!b (f,g,p,q)), we also have that

coe (! (ua (f,g,p,q))) x = g x

Because of these rules, in the presence of univalence, paths can have non-trivial compu-
tational content. A bijection (f,g,p,q) determines a path ua(f,g,p,q), and coercing
along this path applies f. Thus, two different bijections (f,g,p,q) and (f’,g’,p’,q’)
determine two paths ua(f,...) and ua(f’,...) that behave differently when coerced
along.

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 7

2.3 Paths Over Paths

Both simply- and dependently-typed functions preserve path structure, but expressing this
fact for the latter requires some additional machinery. If we have a family of types B : A
� Type, a dependently-typed function f : (x : A) � B(x), and a path p : x =A y,
then for f to preserve p means that f x : B(x) and f y : B(y) are equal. But they do
not even have the same type!

Luckily, these types are equated by ap B p : B(x) = B(y), because B is itself a path-
preserving function. So we can express the equality of f x and f y as a path in B(y) by
coercing f x along ap B p:

coe (ap B p) (f x) = f y

or symmetrically, as a path in B(x):

f x = coe (! (ap B p)) (f y)

We hide this choice behind an interface by defining the type PathOver B p b1 b2 of
heterogeneous equalities (McBride, 2000), or paths over paths, which classifies paths in
the type family B between b1 : B(a1) and b2 : B(a2) correlated by a path p : a1 =
a2. Then apd, the action on paths of dependent functions, has type

apd f : (p : x = y) � PathOver B p (f x) (f y)

x y
p

B(x) B(y)

f x f y

apd f p

: A

In this paper, we will occasionally invoke lemmas characterizing PathOvers in B for
certain B. For example, if B is a constant family λx � C then PathOver B p b1 b2 is
equivalent to the type b1 =C b2. (So when f is not dependent, ap f and apd f have
the same type, modulo this equivalence.) We refer to these lemmas as “simplifications” be-
cause they are type-driven in a straightforward way; see Chapter 2 of the HoTT Book (2013)
for proofs of related results.

2.4 Higher Inductive Types

Ordinary inductive types are specified by generators; for example, the natural numbers
are generated by zero and successor: zero : Nat and succ : Nat � Nat. Higher-
dimensional inductive types (or just higher inductive types) (Lumsdaine & Shulman, 2013;
Shulman, 2011; Lumsdaine, 2011) generalize inductive types by allowing generators not
only for points (terms), but also for paths. For example, one might draw the circle like this:

base
loop

ZU064-05-FPR paper 30 September 2016 14:20

8 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

This drawing has a single point, and a single non-identity loop from this base point to itself.
We define the circle as a higher inductive type with two generators:

space Circle : Type where
-- point constructor:
base : Circle
-- path constructor:
loop : base = base

The constructor base is an element of the inductive type (taking no arguments, just like
zero : Nat). The constructor loop generates a path in the circle, which is an element
of the identity type base =Circle base—think of this as “going around the circle once
clockwise”. The paths of higher inductive types are constructed from generators, such as
loop, using the path operations described above. The intuition is that refl stands still at
the base point, whereas loop ◦ loop goes around the circle twice clockwise, and ! loop
goes around the circle once counter-clockwise.

2.4.1 Circle Recursion

The elimination rule for Nat, primitive recursion, expresses that the natural numbers are
inductively generated by zero and successor. Primitive recursion says that to define a
function f : Nat � X, it suffices to map the generators into X, giving x0 : X and x1
: X � X. Then the function f satisfies the equations

f zero = x0
f (succ n) = x1(f n)

Similarly, the circle is inductively generated by base and loop, so to define a function
from the circle into some other type, it suffices to map these generators into that type, which
means giving a point and a loop in that type. That is, to define a function f : Circle �
X, it suffices to give b’ : X and l’ : b’ =X b’.

For an inductive type, the β -reduction rules state that applying the elimination rule to a
generator computes to the corresponding branch. Thus, by analogy, the computation rules
for the circle should say that, for a function f : Circle � X that is defined by giving b’
and l’,

f base = b’
f loop = l’ -- does not typecheck!

The second equation does not quite make sense, because f is a function Circle � X but
loop is a path in the circle. Therefore we use ap (discussed above) to denote f’s action on
paths:

ap f loop = l’

This computation rule preserves types because its left-hand side is a proof of f base = f
base, which by the first computation rule equals b’ = b’, which is the type of l’.

As a first example, we write a function to “reverse” a path in the circle—to send the
path that goes around the circle n times clockwise to the path that goes around the circle n
times counter-clockwise, and vice versa. Because a path in the circle is represented by the
identity type base = base, we seek a function

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 9

revPath : (base = base) � (base = base)

such that, for example, revPath (loop ◦ loop) = ! loop ◦ ! loop and revPath
(! loop ◦ ! loop) = loop ◦ loop. We could define this function by revpath p =
! p, but because the goal is to illustrate circle recursion, we instead give an equivalent
definition that analyzes p.

To define this function using circle recursion, we need to rephrase the problem as con-
structing a function Circle � X for some type X. The key idea is to define a function
rev : Circle � Circle and then to define revPath to be ap rev. That is, to define a
function on the paths of the circle, we define a function on the circle itself, whose action
on paths is the desired function. In this case, we define

rev : Circle � Circle
rev base = base
ap rev loop = ! loop

revPath p = ap rev p

One technical issue about higher inductive types is whether the computation rule ap
f loop = l’ is a definitional equality or a propositional equality. Current models and
implementations justify only the latter, so we will take it to be a propositional equality.

While primitive recursion suffices to define functions Nat � X, defining a dependently-
typed function (n : Nat) � C(n) requires natural number induction, i.e., specifying c0
: C(zero) and c1 : (n : Nat) � C(n) � C(succ n). Analogously, circle induc-
tion states that one can define a function f : (x : Circle) � C(x) by specifying:

f base = b’ : C(base)
apd f loop = l’ : PathOver C loop b’ b’

We refer the reader to (Licata & Shulman, 2013; Univalent Foundations Program, 2013)
for topological intuition.

2.5 Computation

Although MLTT has been used as the basis for dependently-typed programming languages
(Nordström et al., 1990; Norell, 2007), MLTT itself only defines typing and definitional
equality judgments, and no operational semantics. Formally, the purpose of definitional
equality is only to give terms more types: if types A,B are definitionally equal, then any
terms of type A also have type B. For example, refl : 1 + 1 = 2 because refl : 2 =
2 and 1 + 1 is definitionally equal to 2. For this reason, all definitional equalities are also
propositional by refl.

MLTT admits a computational interpretation in the sense that two open terms are def-
initionally equal exactly when their β -normal forms are equal; and that for closed terms
of type bool, head reduction suffices and always results in either true or false. One can
therefore think of closed terms as programs, head reduction as their operational semantics,
and bool as an observable type. (A related way to extract computational meaning from
proofs is to interpret the proof rules as closed λ -terms, a technique known as realizability
(Kleene, 1945; Kreisel, 1959). Aczel (1977) has constructed realizability interpretations of
MLTT; doing the same for homotopy type theory is an open problem.)

ZU064-05-FPR paper 30 September 2016 14:20

10 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

Homotopy type theory, as defined in the HoTT Book (2013), extends the typing judg-
ment with univalence and higher inductive types, but does not add any definitional equali-
ties involving non-refl paths. This breaks canonicity—the property that all closed terms
in bool are definitionally equal to either true or false—by introducing terms like stuck:

notb = (not, not, ...) : Bijection Bool Bool -- swaps true and false
stuck = coe (ua notb) true : Bool

which are propositionally, but not definitionally, equal to false. It also breaks MLTT’s
computational interpretation, because stuck is head-normal but neither true nor false.

It is conjectured that one can restore canonicity and the computational interpretation by
adding more definitional equalities; doing so is an active area of research (Licata & Harper,
2012; Cohen et al., 2016; Altenkirch & Kaposi, 2015). (Current attempts change how the
identity type is axiomatized, in order to simplify its definitional equalities.) But this raises
the question: which propositional equalities should be made definitional? We certainly
cannot make all propositional equalities definitional, because the former are proof-relevant
(programs can distinguish them) while the latter are not. As a concrete example, A * B and
B * A are propositionally equal types by univalence, but if we made them definitionally
equal, then any term of type A * B would also have type B * A.

However, there are many particular propositional equalities which we (and others) con-
jecture are computation steps, like coe (ua (f,g,p,q)) x = f x (which would fix
stuck). A traditional computational interpretation would require such equations to be
definitional. However, we believe it is possible to describe these equalities as computa-
tional even when some of them remain propositional—in plain MLTT, not all definitional
equalities are head reductions; in current homotopy type theory, not all computation steps
are definitional equalities. In our setting, we run programs by giving a sequence of compu-
tational propositional equalities. For example, we calculate

revPath (loop ◦ loop)
= ap rev (loop ◦ loop)
= (ap rev loop) ◦ (ap rev loop)
= ! loop ◦ ! loop

where the final two steps are propositional but not definitional equalities.

3 Patch Theory in Homotopy Type Theory

Patch theory is the abstract study of version control systems by considering how their
patches behave under operations such as composing, reverting, and merging. Patch theory
allows us to separate the purely algebraic aspects of a version control system (which
patches exist, and which equations they satisfy) from its implementation details (how
repositories and patches are represented). We refer to a particular algebraic characterization
of a version control system as a theory of version control, or a patch theory; and to an
implementation of it as a model of that theory.

In a patch theory, each patch comes equipped with specified domain and codomain
contexts, representing respectively, the repository states on which a patch is applicable,
and the states resulting from such an application. For example, a patch that deletes a file
is applicable only to states in which the file exists, and results in a state in which it does

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 11

not. In addition, patches respect certain laws that relate sequences of patches to equivalent
sequences of patches—equivalent, in the sense that the two sequences have the same effect
on the state of a repository.

Others have employed a variety of mathematical formalisms to represent patch theories,
including separation logic (Swierstra & Löh, 2014), category theory (Houston, 2012; Mim-
ram & Di Giusto, 2013), and the language of inverse semigroups (Jacobson, 2009). In this
paper, we formulate patch theory in homotopy type theory.

3.1 Patch Theories as Higher Inductive Types

In this paper, we represent patch theories as higher inductive types. The patch contexts of
a patch theory are represented as points of the corresponding type. Patches are represented
as paths between their domain and codomain patch contexts. Patch laws are represented as
paths between patches, or homotopies.

Representing patches as paths means that we automatically get a refl patch for every
patch context, a composite patch q ◦ p for any composable patches p,q, and an inverse
patch (! p) for any patch p. We use these paths to model the constant patches, composite
patches, and inverse patches, respectively, that we expect to exist in every patch theory.
Representing patch laws as homotopies means that the groupoid laws for paths (associa-
tivity of composition, etc.) automatically hold for these patch operations.

Notice that these inverse patches are two-sided inverses. That (! p) is a post-inverse to
p means that applying a patch and then its inverse is the same as no change; however, that
it is a pre-inverse means that we can apply the inverse of a patch before the patch itself,
also to no effect. We will explore this point in greater detail later.

3.2 Interpretations of Patch Theories

A patch theory is a formal specification of patch contexts, patches, and patch laws; a
version control system, however, consists of concrete repositories and functions between
them. We bridge this gap by ensuring that a version control system faithfully implements
its specification, in the sense that we can map each patch context to the collection of repos-
itories it classifies, each patch to a function that updates those repositories appropriately,
and each patch law to an equation between those functions. In the terminology of functorial
semantics, such a mapping is an interpretation or model of the patch theory.

In this paper, we represent interpretations of a patch theory as functions out of its higher
inductive type R, or out of R’s identity types. For example, a version control system is
a function I : R � Type. We define such an I using R-recursion, which (following
Section 2.4.1) means we give a type for each patch context of R, a path between types
(which is, by the univalence axiom, a bijection between types) for each generating path,
and a homotopy between those paths for each generating patch law.

This I, like all functions definable in homotopy type theory, preserves the path structure
of its domain, so if we prove a theorem about the patch theory, we can send it to a
theorem about its interpretation. This is useful because a patch theory may have many
interpretations. Other kinds of interpretations we consider are patch optimizers, which

ZU064-05-FPR paper 30 September 2016 14:20

12 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

interpret patches as simpler but equivalent compositions of patches, and patch histories,
which interpret patches as concrete changelogs, rather than the changes themselves.

Unfortunately, not all seemingly-reasonable interpretations are actually functorial. Sup-
pose we wanted a function countPatches which takes every (composite) patch to the
number of primitive (generating) patches it contains—then for primitive p, countPatches
(!p ◦ p) = 2 and countPatches refl = 0. But (!p ◦ p) = refl, so countPatches
would not respect patch laws, and is therefore not definable! We will see how functoriality
complicates the definitions of patch histories in Sections 7 and 8.

3.3 Merging

For our purposes, merging is an operation on a patch theory that takes a pair of diverging
patches or span, (f1, f2), and returns a pair of converging patches or cospan, (g1,g2), which
is a reconciliation of the span in the sense that

merge(f1, f2) = (g1,g2) =⇒ g1 ◦ f1 = g2 ◦ f2 :

A

B C

D

f1 f2

g1 g2

In order to support distributed version control systems, we will further require that the
merge operation be symmetric,

merge(f1, f2) = (g1,g2) =⇒ merge(f2, f1) = (g2,g1)

because the order of two patches should not affect how to reconcile them.
It is always possible to define a total merge function, since for any span we may give

merge(f1, f2) = (! f1, ! f2), the reconciliation that undoes both changes. This can be used to
signal a merge conflict, a situation in which we are unable to automatically reconcile the
competing changes in a sensible way, and for which human intervention is required.

In the remainder of this paper, we will consider representations, interpretations, and
merge functions for a number of patch theories.

4 An Elementary Patch Theory

First, we define a very simple patch theory, to illustrate our basic technique: we take the
repository to be a single integer, and the patches to be adding or subtracting some number
n from it. Because all patches apply to any repository state, we need only a single patch
context, which we call num. Patches will then be represented as paths num = num, which
represents the fact that every patch can be applied to context num and results in context
num. Suppose we have a patch add1 that represents adding 1 to the repository. Then,
because identity, inverse, and composite paths always exist, we also have paths refl,
which represents adding 0, and add1 ◦ add1, which represents adding 2, and ! add1,
which represents subtracting 1, and so on. In fact, the patches adding n for any integer n are

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 13

generated by add1, because the integers are the free group on one generator. This motivates
the following higher inductive definition of this simple Repository and its patches:

space R : Type where
-- point constructor (patch context):
num : R
-- path constructor (basic patch):
add1 : num = num

This is, of course, just a renaming of the circle!

Remark 4.1
In ordinary dependent type theory, freely defining this patch theory would require syntax
constructors for identity, composition, and inverses; e.g. using a datatype as follows:

data Patch where
add1 : Patch
id : Patch
compose : Patch � Patch � Patch
inv : Patch � Patch

Then, to achieve the correct patch laws, one would need to impose the group laws on this
type; this could be done using a quotient type (Constable et al., 1986) to assert that

assoc : compose r (compose q p) = compose (compose r q) p
invr : compose p (inv p) = id
invl : compose (inv p) p = id
unitr : compose p id = p
unitl : compose id p = p

By using homotopy type theory and modeling patches as paths, however, the patch theory
automatically includes identity, inverses, composition, and the group laws.

4.1 Interpreter

Next, we define an interpreter, which explains how to apply a patch to a repository. Because
the intended semantics is that the repository is an integer, we would like to interpret the
repository context num as the type Int of integers. Because patches are invertible, we
would like to interpret each patch as an element of the type Bijection Int Int.

Remark 4.2
To build intuition, consider writing the interpreter “by hand” for the quotient type Patch
defined in Remark 4.1. We would first define:

interp : Patch � Bijection Int Int
interp add1 = successor
interp id = reflb
interp (compose p2 p1) = interp p2 ◦b interp p1
interp (inv p) = !b (interp p)

where successor : Bijection Int Int is the bijection given by (λx � x+1, λx
� x-1, ...) Then, to show that this definition is well-defined on the quotient of patches
by the group laws, we would need to do a proof with 5 cases for the 5 group laws, where
in each case we appeal to the inductive hypotheses and the corresponding group law for
bijections.

ZU064-05-FPR paper 30 September 2016 14:20

14 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

Returning to our higher-inductive representation of patches, we define the interpreter
using the recursion principle for R, which is of course the same as circle recursion, as dis-
cussed in Section 2.4.1. We want to interpret each point of R, which represents a repository
context, as the type of repositories in that context, and each path as a bijection between
the corresponding types. In this case, that means we would like to interpret num as Int
and add1 as the successor bijection. R-recursion says that to define a function f : R �
X, it suffices to find a point x0 : X and a loop p : x0 = x0. Thus, we can represent the
interpretation by a function R � Type, because a point of Type is a type, and a loop in
Type is, by univalence, the same as a bijection! This motivates the following definition:

I : R � Type
I num = Int
ap I add1 = ua successor

interp : (num = num) � Bijection Int Int
interp p = coeBiject (ap I p)

Up to propositional equality, this definition satisfies the defining equations of interp as
defined in Remark 4.2. First, we can calculate that interp add1 = successor,

interp add1
= coeBiject (ap I add1) [definition]
= coeBiject (ua successor) [ap I on add1]
= successor [coe on ua successor]

using the simplification rules for ap I on add (from higher inductive elimination) and coe
on ua b (from univalence).4

Moreover, interp takes path operations to the corresponding operations on bijections,
because it is defined via ap, and ap preserves the path operations. For example,

interp (q ◦ p)
= coeBiject (ap I (q ◦ p))
= coeBiject (ap I q ◦ ap I p) [ap on ◦]
= (coeBiject (ap I q)) ◦b (coeBiject (ap I p))
= interp q ◦b interp p

interp refl = reflb and interp (! p) = !b (interp b) are similar. That is, the
semantics is functorial.

For example, if we apply5 a patch add1 ◦ ! add1 to a repository whose contents are
0, we have

(interp (add1 ◦ ! add1)) 0
= ((interp add1) ◦b (interp (! add1))) 0
= ((interp add1) ◦b (!b (interp add1))) 0
= (successor ◦b !b successor) 0
= successor (!b successor 0)
= successor -1
= 0

4 We also use that fact that two bijections are equal iff their underlying functions are equal, because
inverses are unique up to homotopy.

5 We elide the projection from Bijection A B to A � B.

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 15

Comparing this definition of interp with Remark 4.2, we see that the recursion princi-
ple for the higher-inductive representation of patches provides an elegant way to express
interpretations of a patch theory. We needed to give only the key case for add1—the
semantics of the basic patches is automatically lifted to patch operations, not manually as
in Remark 4.2. Moreover, we did not need to prove that bijections satisfy the group laws—
this fact is necessary for the univalence axiom to make sense, so it is effectively part of the
metatheory of homotopy type theory, rather than of our program. This example illustrates
that univalence can be used to extract computational content from a path, by mapping the
path into a path in the universe, which by univalence can be given by a bijection.

Because R is the circle, one may wonder about the topological meaning of this inter-
preter. In fact, the type family I defined here is called the universal cover of the circle, and
is discussed further in Licata & Shulman (2013) and the HoTT Book (2013). The function
interp p adds to its input what is called the winding number of a path p in the circle,
which can be thought of as a normal form that counts how many times that path goes
around the circle, after “detours” such as loop ◦ ! loop have been cancelled.

Note that, although we were thinking of num as an integer and add1 as successor, we
can give a sound interpretation I in any type with a bijection on it. For example,

I’ : R � Type
I’ num = Bool
ap I’ add1 = ua notb

where notb : Bijection Bool Bool = (not, not, ...). That is, we interpret the
patches in Bool instead of Int, and we interpret add1 as adding 1 modulo 2. This inter-
pretation satisfies additional equations not demanded by the patch theory, such as

ap I’ add1 ◦ ap I’ add1 = ua (notb ◦b notb) = refl

This equation does not hold in our original interpretation I, because incrementing an in-
teger is not self-inverse. In fact, the equational theory of R is complete for the interpretation
as Int, which in homotopy theory is known as the fact that the fundamental group of the
circle is the integers.

4.2 Merge

Next we implement a merge operation, which satisfies the laws discussed in Section 3.
Writing Patch for num = num, and specializing the interface to the setting where we have
only one context, we need to implement the following:

merge : Patch × Patch � Patch × Patch
reconcile : (f1 f2 g1 g2 : Patch)

� merge (f1, f2) = (g1, g2)
� g1 ◦ f1 = g2 ◦ f2

symmetric : (f1 f2 g1 g2 : Patch)
� merge (f1, f2) = (g1, g2)
� merge (f2, f1) = (g2, g1)

In this simple setting, any two patches commute, essentially because addition is com-
mutative. Thus, we define

merge(f1, f2) = (f2, f1)

ZU064-05-FPR paper 30 September 2016 14:20

16 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

For symmetric, because g1 = f2 and g2 = f1, we need to show that merge (f2, f1)
= (f1, f2), which is true by definition.

For reconcile, we need to prove that f2 ◦ f1 = f1 ◦ f2—all loops on the circle
commute. It is not immediately obvious how to do this, because homotopy type theory does
not provide a direct induction principle for loops. That is, there is no built-in elimination
rule that allows one to, for example, analyze f1 as either add1, or the identity, or an inverse,
or a composition, because such a case-analysis would need to respect all paths between
loops, which differ from type to type.

Instead, we must prove a derived induction principle for the type num = num from the
induction principle for R—roughly analogously to how, for the natural numbers, course-
of-values (or strong) induction is derived from mathematical induction. Moreover, proving
these induction principles is sometimes a significant mathematical theorem. In homotopy
theory, it is called calculating the homotopy groups of a space, and even for spaces as
simple as the spheres some homotopy groups are unknown. However, we have developed
some techniques for calculating homotopy groups in type theory (Licata & Shulman, 2013;
Licata & Brunerie, 2013; Licata & Finster, 2014; Univalent Foundations Program, 2013),
which can be applied here.

In this particular case, we already know that the fundamental group of the circle is the
integers. That is, the type num = num is in bijection with Int, and so the integers give
canonical representatives (“add n, for n : Int”) for equivalence classes of patches in
this patch theory, considered modulo the group laws. We establish that bijection by giving
functions winding and repeat that compose to the identity. The function winding :
num = num � Int is λp � interp p 0, for interp p as defined above. The function
repeat : Int � num = num is defined by induction on the Int, viewing Int as a
datatype with three constructors: 0, + n (where n : Nat) representing n+ 1, and - n
(where n : Nat) representing −(n+1).

repeat 0 = refl
repeat (+ n) = add1 ◦ add1 ◦ ... ◦ add1 [n+1 times]
repeat (- n) = !add1 ◦ !add1 ◦ ... ◦ !add1 [n+1 times]

In fact, winding and repeat are also group homomorphisms, e.g., repeat (x + y) =
repeat x ◦ repeat y. The proof that these functions are mutually inverse is described
in Licata & Shulman (2013) and the HoTT Book (2013), which contain the full proof that
the fundamental group of the circle is the integers.

The bijection between num = num and Int induces a derived induction principle: since
any patch is equal to repeat n for some n, in order to prove P : num = num � Type
for all paths, it suffices to prove P(repeat n) for all integers n. Applying this (twice) to
the goal f2 ◦ f1 = f1 ◦ f2, it suffices to show

repeat x ◦ repeat y = repeat y ◦ repeat x

This is proved as follows:

repeat x ◦ repeat y
= repeat (x + y) [group homomorphism]
= repeat (y + x) [commutativity of addition]
= repeat y ◦ repeat x

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 17

Thus, for this patch theory, the correctness of merge follows from the fact that the
fundamental group of the circle is the integers—our first example of a software correctness
proof being a corollary of a theorem in homotopy theory!

One further point to note is that here we were able to define merge without converting
paths to integers, but to prove the reconciliation property we needed to reason inductively,
using canonical representatives of equivalence classes of paths. This is because all patches
commute, so we can define merge(x, y) = (y, x) without analyzing the structure of x
and y. In Sections 7 and 8, we will need to analyze the structure of patches in order to even
define merging. We end this section by showing an alternate definition of merge, which
analyzes its input patches in that way.

merge’ (p, q) =
let (a, b) = mergeI(winding p, winding q)
in (repeat a, repeat b)

mergeI : Int × Int � Int × Int
mergeI(+ (1+x), - (1+y)) =

let (a, b) = mergeI (+ x, - y)
in (a-1, b+1)

...

The function merge’ is defined by converting the given paths p and q to integers. Paths
that are equal according to the group laws are necessarily sent to equal representatives;
for example, both (add1 ◦ add1) ◦ add1 and add1 ◦ (add1 ◦ add1) are sent to 3.
We may then compose this choice of representatives with any function on integers, and
the result will be guaranteed to respect the group laws. Here we use mergeI to recursively
“merge” the two integers with cases such as the one given above, which copies a positive
successor on the left to a positive successor on the right, and a negative successor on the
right to a negative successor on the left. (In effect, it merges “add 1 and then do x” with
“subtract 1 and then do y” by merging x and y and then moving the “add 1” to the right and
the “subtract 1” to the left.) Finally, once mergeI has computed the merge of two chosen
representatives, merge’ uses repeat to convert the resulting integers back to paths. One
can prove by induction that mergeI (x, y) = (y, x); and winding and repeat are
mutually inverse, so merge’ agrees with the original definition of merge.

5 A Patch Theory with Laws

In this section, we consider a patch theory with patch laws beyond the groupoid laws. In
the intended semantics of this theory, the repository consists of one document with a fixed
number n of lines, and there is one basic patch, which modifies the string at a particular
line. To fit this into a framework of bijections, we take the patch s1 ↔ s2 @ i to mean
“permute s1 and s2 at position i”. That is, applying this patch replaces line i with s2 if it
is s1, or with s1 if it is s2, or leaves it unchanged otherwise. We add patch laws stating that
edits at independent lines commute, and that swapping s with s has no effect. We define
two interpretations of this patch theory—the intended patch interpreter, and a simple patch
optimizer; we do not consider merge in this section, because we discuss it for the more
general language in Section 8.

ZU064-05-FPR paper 30 September 2016 14:20

18 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

5.1 Definition of Patches

This patch theory is represented by the following higher inductive type, where n : Nat is
fixed throughout this section:

space R : Type where
-- point constructor (patch context):
doc : R
-- path constructor (basic patch):
↔@_ : (s1 s2 : String) (i : Fin n) � doc = doc
-- path-between-path constructors (patch laws):
indep : (s t u v : String) (i j : Fin n) � (i 6= j) �

(s ↔ t @ i) ◦ (u ↔ v @ j)
= (u ↔ v @ j) ◦ (s ↔ t @ i)

noop : (s : String) (i : Fin n) � s ↔ s @ i = refl

The point constructor doc should be thought of as a document with n lines. The path
constructor s1 ↔ s2 @ i represents the basic patch, swapping s1 and s2 at line number
i. Fin n is the type of natural numbers less than n, which we interpret here as line numbers
in an n-line document (where we start numbering at 0).

This language also has non-trivial patch laws, which are represented by giving gener-
ators for paths between paths. The equation noop states that swapping s with s is the
identity for all s; this is useful for justifying a simple optimizer, which optimizes away the
two string comparisons that executing s ↔ s @ i would require. The equation indep
states that edits to independent lines commute; this is useful for defining merge (x 6= y is
the negation of x = y, i.e. (x = y) � void).

Because R is our first example of a type with both path and path-between-path construc-
tors, we go over its recursion and induction principles in detail. To define a function f :
R � X, it suffices to give

doc’ : X
swap’ : (s1 s2 : String) (i : Fin n) � doc’ = doc’
indep’ : (s t u v : String) (i j : Fin n) � (i 6= j) �

(swap’ s t i) ◦ (swap’ u v j)
= (swap’ u v j) ◦ (swap’ s t i)

noop’ : (s : String) (i : Fin n) � swap’ s s i = refl

and then we have the following computation rules

f doc = doc’
β1 : ap f (s1 ↔ s2 @ i) = swap’ s1 s2 i
β21 : PathOver (λ(x,y) � x ◦ y = y ◦ x) (β1, β1)

(ap (ap f) (indep s t u v i j neq))
(indep’ s t u v i j neq)

β22 : PathOver (λx � x = refl) β1
(ap (ap f) (noop s i))
(noop’ s i)

The first computation rule is in fact a definitional equality, while the second is a path.
The third and fourth computation rules are stated as PathOvers because their left- and
right-hand sides are in different (although propositionally equal) types. For example, in
the fourth computation rule, ap (ap f) (noop s i) has type ap f (s ↔ s @ i) =

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 19

ap f refl, whereas noop’ s i has type swap’ s s i = refl. The right-hand sides
match up because ap f refl is definitionally equal to refl, and the left-hand sides match
up over the path β1, the second computation rule.

Although we use pattern-matching notation for R-recursion, keep in mind that the types
of the left-hand sides (e.g., ap (ap f) (noop s i)) are in the last two cases only propo-
sitionally equal, via PathOver simplifications, to the types of the right-hand sides (e.g.,
noop’ s i).

The induction principle for R states that to define a function f : (x : R) � C(x), it
suffices to give

• c’ : C(doc)
• s’ : PathOver C (s1 ↔ s2 @ i) c’ c’
• A 2-dimensional PathOver as the image of indep.
• A 2-dimensional PathOver as the image of noop.

We omit the details of the final two, which are not used below.

5.2 Interpreter

Our intended patch interpreter is a function

interp : (doc = doc) � Bijection (Vec String n) (Vec String n)

As before, we generalize this to an interpretation of the whole patch theory R, and define a
function I : R � Type such that

interp p = coeBiject (ap I p)

To interpret the basic patch s1 ↔ s2 @ i, we need a corresponding bijection that
permutes two strings at a position in a length-n vector of strings, represented by the type
Vec String n.

permute : (String × String) � String � String
permute (s1,s2) s | String.equals (s1,s) = s2
permute (s1,s2) s | String.equals (s2,s) = s1
permute (s1,s2) s | _ = s

applyat : (A � A) � Fin n � Vec A n � Vec A n
applyat f i <x1,...xn> = <x1,...,f xi,...,xn>

swapat : (String × String) � Fin n � Bijection (Vec A n) (Vec A n)
swapat (s1,s2) i = (applyat (permute (s1,s2)) i, ...)

The interpretation I is defined as follows:

I : R � Type
I doc = Vec String n
ap I (s1 ↔ s2 @ i) = ua (swapat (s1,s2) i)
ap (ap I) (indep s t u v i j neq) =

GOAL5.1 : ua(swapat (s,t) i) ◦ ua(swapat (u,v) j)
= ua(swapat (u,v) j) ◦ ua(swapat (s,t) i)

ap (ap I) (noop s i) = GOAL5.2 : ua(swapat (s,s) i) = refl

ZU064-05-FPR paper 30 September 2016 14:20

20 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

We interpret doc as Vec String n. The image of s1 ↔ s2 @ i must be a path in Type
between I(doc) and I(doc)—i.e., between Vec String n and itself. For this, we choose
the bijection swapat (s1,s2) i, packed up as a path in the universe using the univalence
axiom. The metavariables GOAL5.1 and GOAL5.2 represent goals, that is, terms that must
still be provided before the program is complete. The image of indep and noop are the
goals GOAL5.1 and GOAL5.2, with the types written out above—which ensure that the
interpretation validates the patch laws. These goals can be solved by equational properties
of bijections, combined with the rules about the interaction of univalence with identity
and composition described in Section 2. For example, GOAL5.2 is solved by observing
that swapat (s,s) i is the identity bijection, and then using the fact that ua reflb =
refl. GOAL5.1 is solved by turning both sides into a composition of bijections using the
fact that ua b2 ◦ ua b1 = ua (b2 ◦b b1) , and then proving the corresponding fact
about swapat:

swapat-independent : (i 6= j) �
(swapat (s,t) i) ◦b (swapat (u,v) j)

= (swapat (u,v) j) ◦b (swapat (s,t) i)

As before, we do not need to give cases for the group operations or prove the group
laws—these come for free, from functoriality.

5.3 Optimizer

We will also define an alternative interpretation of this theory, a patch optimizer, to illus-
trate a benefit of domain-specific patch laws:

optimize : (p : doc = doc) � Σ(q : doc = doc). p = q

The type of optimize says that it takes a patch p and produces a patch q that behaves
the same, according to the patch laws, as p. Our goal is to optimize s ↔ s @ i to refl,
saving ourselves two unnecessary string comparisons when the patch is applied.

We show two definitions of optimize, to illustrate some different aspects of program-
ming in homotopy type theory.

Program then prove. In this definition, we first write a function optimize1 : doc =
doc � doc = doc, and then prove that this function returns a path that is equal, accord-
ing to the patch laws, to its input. The idea is to apply the following function opt0 to each
patch s1 ↔ s2 @ i:

opt0 : String � String � Fin n � doc = doc
opt0 s1 s2 i = if String.equals s1 s2

then refl
else (s1 ↔ s2 @ i)

To define optimize1, we generalize the problem to defining a function opt1 that acts
on all of R, and then derive optimize1 as its action on paths—the same technique we used
when reversing the circle in Section 2.4.1. This is defined as follows:

opt1 : R � R
opt1 doc = doc

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 21

ap opt1 (s1 ↔ s2 @ i) = opt0 s1 s2 i
ap (ap opt1) (indep s t u v i j neq) =

GOAL5.3 : opt0 s t i ◦ opt0 u v j
= opt0 u v j ◦ opt0 s t i

ap (ap opt1) (noop s i) =
GOAL5.4 : opt0 s s i = refl

We map doc to doc, and apply opt0 to s1 ↔ s2 @ i. However, to complete the defini-
tion, we must show that the optimization respects the patch laws, via the goals GOAL5.3 and
GOAL5.4 whose types are given above. The goal GOAL5.4 is true because String.equals
s s will be true, so, after case-analysis, refl proves that opt1 s s i = refl. The goal
GOAL5.3 requires case-analyzing both String.equals s t and String.equals u v.
If both are true, the goal reduces to refl ◦ refl = refl ◦ refl, which is true by
refl. If the former but not the latter is true, the goal reduces to refl ◦ u ↔ v @ j =
u ↔ v @ j ◦ refl, which is true by unit laws. The third case is symmetric. Finally, if
neither are true, then the goal holds by indep.

Next, we prove this optimization correct using R-induction:

opt1Correct : (x : R) � x = opt1 x
opt1Correct doc = refl
apd opt1Correct (s1 ↔ s2 @ i) =

GOAL5.5 : PathOver (λx � x = opt1 x) (s1 ↔ s2 @ i) refl refl
apd (apd opt1Correct) (indep s t u v i j neq) = GOAL5.6
apd (apd opt1Correct) (noop s i) = GOAL5.7

In the case for doc, we need to give a path doc = opt1 doc, but opt1 doc is doc, so
we give refl. In the case for s1 ↔ s2 @ i, the induction principle requires an element
of the type listed above. By an argument we suppress, this PathOver type simplifies to

s1 ↔ s2 @ i = opt0 s1 s2 i

so this is where we prove that opt0 preserves the meaning of a patch. This requires two
cases: when s1 is equal to s2, we use noop; when it is not, we use refl.

The remaining two cases require proving that this proof of correctness of opt respects
the patch laws. In each case, the goal asks us to prove the equality of two proofs of equality
of patches. That is, the goal has the form

f1 =p=doc=docq f2

where p and q are two patches, and f1 and f2 are two patch laws equating these two patches.
In homotopy type theory, equality of points can contain interesting information—after

all, we are representing patches as equalities, or paths. Likewise, equality of equalities is
not trivial—we can choose to have some patch laws but not others, as we have done in R.
So there is no reason that equalities of equalities of equalities, like the equation we have
above, must necessarily hold.

For example, indep i6=j ◦ indep j6=i and reflexivity are both patch laws between
the patch (s ↔ t @ i) ◦ (u ↔ v @ j) and itself. (The former swaps the order of the
patches twice.) But unless we add this equation to R, there is no proof that these patch laws
are equal to each other; we could even equate certain patch laws but not others!

ZU064-05-FPR paper 30 September 2016 14:20

22 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

Truncation (see Chapter 7 of the HoTT Book (2013)) is a technique for trivializing all
equations of a certain “height” in a type. In this case, we could truncate by adding the
following constructor to R:

-- path-between-path-between-path constructor
-- (all proofs of patch laws are equal)
trunc : (x y : R) (p q : x = y) (f1 f2 : p = q) � f1 = f2

The trunc constructor adds a path between any two parallel patch laws f1 and f2. Another
way to say this is that trunc forces R to be a 1-groupoid, because it ensures that any
two paths between parallel paths are equal. As usual, each constructor places additional
demands on all maps out of R; for trunc, it says that we can only define maps from R to
other 1-groupoids.

Fortunately, that restriction would not prevent us from defining this patch optimizer—
opt1 maps into R (a 1-groupoid), and opt1Correct maps into an identity type of R
(and the identity types of a 1-groupoid are 1-groupoids). Thus, truncating R would be an
appropriate modification to make. (All the subsequent patch theories we consider will turn
out to be 1-groupoids, without the need for truncation.)

Program and prove. An alternative, which requires neither truncation nor proving any
equations between patch laws, is to simultaneously implement the optimizer and prove its
correctness. Once again, we define

optimize : (p : doc = doc) � Σ(q : doc = doc). p = q

as the action on paths of a function on R. However, optimize cannot be the ap of any
function, because ap takes simply-typed functions to identity types, whereas the codomain
of optimize is not an identity type, and depends on the input patch p. Instead, we will
define a dependently-typed function

opt : (x : R) � Σ(y : R). y = x

and define optimize essentially as the apd of opt.
Recall that apd takes a type family B : R � Type and a function f : (x : R) �

B(x) to a function (p : x = y) � PathOver B p (f x) (f y). In this case, the
type family is λx � Σ(y : R). y = x, and so

apd opt (p : doc = doc) : PathOver (λx � Σy:R. y = x) p (opt doc) (opt doc)

But this does not look like the type of optimize p!
When the family B is known, the type PathOver B p b1 b2 can be simplified in a

type-driven way to a propositionally equal one. In this case, B(x) is the Σ-type of a constant
family R with an identity type y = x. According to the appropriate lemmas:6

simpl : PathOver (λx � Σy:R. y = x) p (doc,refl) (doc,refl)
= Σ (q : doc = doc). p = q

6 This is because a PathOver in a Σ-type is a pair of PathOvers in each component (the second
over the first), because a PathOver in a constant family λx � R is just a path q in R, and because
a PathOver in an identity type is a square in the underlying type R—specifically, PathOver

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 23

Comparing the left-hand side of simpl to the type of apd opt p, notice that if opt doc
= (doc,refl), then

apd opt p : PathOver (λx � Σy:R. y = x) p (doc,refl) (doc,refl)

and so coercing this along simpl will get us the type we wanted:

optimize : (p : doc = doc) � Σ(q : doc = doc). p = q
optimize p = coe simpl (apd opt p)

The upshot is that we can define optimize once we have defined an opt such that opt
doc = (doc,refl). We do this using R-induction as follows:

opt doc = (doc, refl)
apd opt (s1 ↔ s2 @ i) = coe (! simpl)

(if String.equals s1 s2
then (refl , noop s1 i)
else (s1 ↔ s2 @ i , refl))

apd (apd opt) _ = <contractibility>

In the second clause, we need a term of type

PathOver (λx � Σy:R. y = x) p (doc,refl) (doc,refl)

We obtain one by coercing along (! simpl) a term of type

Σ(q : doc = doc). (s1 ↔ s2 @ i) = q

We choose a term implementing our optimization—replace the input patch s1 ↔ s2 @
i with refl when the strings are equal, and leave it unchanged otherwise—and pairing
each output with a proof that it is equal to the input s1 ↔ s2 @ i.

For each of the noop and indep cases, we need to give a homotopy between two specific
paths between two specific points in the type Σy:R. y = x (for some x). However, the
type Σy:R. y = x is in fact contractible—it is equivalent to unit, because any pair (y,
p) can be transformed into (x, refl) by coercing y to x along p (see Lemma 3.11.8 of
the HoTT Book (2013)). The identity types of any contractible type are mere propositions,
so any two paths are connected by a homotopy. Thus we can complete the noop and indep
cases simply by appealing to these facts and the contractibility of Σy:R. y = x.

Singleton Types and Computation The type Σy:A. x = y is traditionally called a sin-
gleton type, written S(x), because it consists of those points in A which are equal to x
(along with a proof that x = y). One may well wonder what is the point of writing a
function into a singleton type:

(λ(x,y) � y = x) (p,q) refl refl is a square

p

refl

refl

q

which is the same as a path between p and q (this is what motivates the choice of (doc,refl)
and (doc,refl) as the endpoints of the PathOver).

ZU064-05-FPR paper 30 September 2016 14:20

24 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

optimize : (p : doc = doc) � S(p).

when all the elements of S(p) are equal? Isn’t this just a triviality, because it must be the
identity function?

The answer is no, because the point y and the path x = y can both contain meaningful
computational content. Consider defining various sorting algorithms in plain MLTT. We
can express the correctness of a sorting algorithm by comparing it to a reference solution:

bubblesort : Nat List � Nat List
quicksort : Nat List � Nat List
quicksortCorrect : (xs : Nat List) � bubblesort xs = quicksort xs

qs : (xs : Nat List) � S(bubblesort xs)
qs xs = (quicksort xs, quicksortCorrect xs)

Since all sorting algorithms are extensionally equal, they all have type (xs : Nat List)
� S(bubblesort xs). Indeed, there is no way inside MLTT to distinguish extension-
ally equal functions—there is no predicate satisfied by one but failed by the other. Yet
we consider it useful to define quicksort, because it computes in a different way than
bubblesort, and quicksortCorrect is of mathematical interest even though it returns
refl for every xs.

Likewise, even though optimize is equal to the identity function—as is every function
of type (a : A) � S(a)—we expect, based on work on the computational interpretation
of homotopy type theory, that it will compute differently. That is, optimize (s ↔ s @
i) will evaluate to refl and not s ↔ s @ i, even though these paths are homotopic
by noop s s i. That homotopy is a prime example of a non-computational propositional
equality, as we discussed in Section 2.5.

6 A Patch Theory with Multiple Contexts

The patch theories of Sections 4 and 5 only had one patch context each, because their
patches were all applicable to every repository state. Realistic patch theories do not share
this property—for example, deleting a line requires a file to be non-empty. In this section,
we develop a very simple patch theory requiring multiple patch contexts, for a natural
number repository that can be incremented or decremented.

In Section 4, compositions of the single path constructor add1 : num = num and its
inverse allow us to add or subtract arbitrary numbers from the integer repository. In a
natural number repository, we cannot subtract a number larger than the current contents.
Our solution is to maintain a lower bound on the number in the repository. We define R as
follows:

space R : Type where
-- point constructor (patch context):
doc : Nat � R
-- path constructor (basic patch):
add1 : (n : Nat) � doc n = doc n+1

R has Nat-indexed contexts, and a patch from doc n to doc n+1 for each n. Whereas
doc in Section 4 classified all repositories, here doc n classifies those repositories whose
contents are at least n, and thus, can safely be decremented n times.

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 25

How does this solve the problem? Ignoring compositions of patches for the moment, we
need only rule out applying the patch ! (add1 n) to a repository containing 0. But add1
n is a patch from doc n to doc n+1, so its inverse is a patch from doc n+1 to doc n, and
any repository whose contents are at least n+1 for some n cannot contain 0. In general, any
patch whose behavior is to subtract m from a repository must be a patch from doc n+m to
doc n, and so it cannot apply to any repository whose contents are less than m.

6.1 Interpreter

As before, we want to define an interp function implementing patches—terms of type
doc n = doc m—as bijections between the types implementing the patch contexts doc
n and doc m. (In Sections 4 and 5, we only had one patch context, so a single type
implemented all repositories.)

Following the intuition developed above, we interpret doc n as the type of natural
numbers which are AtLeast n; that is, numbers m paired with a proof that n ≤ m.

data _≤_ : Nat � Nat � Type where
z≤ : (n : Nat) � 0 ≤ n
s≤ : {n m : Nat} � n ≤ m � n+1 ≤ m+1

AtLeast : Nat � Type
AtLeast n = Σ (m : Nat). n ≤ m

We then interpret add1 n : doc n = doc n+1 as a function AtLeast n � AtLeast
n+1 sending m (such that n ≤ m) to m+1 (which thus satisfies n+1 ≤ m+1).

increment : (n : Nat) � Bijection (AtLeast n) (AtLeast n+1)
increment n = (λ(m,pf) � (m+1, s≤ pf), ...)

The fact that this function is a bijection allows us to define I : R � Type as in the
previous sections, and therefore interp as well:

I : R � Type
I (doc n) = AtLeast n
ap I (add1 n) = ua (increment n)

interp : {n m : Nat} � (doc n = doc m) � Bijection (AtLeast n) (AtLeast m)
interp p = coeBiject (ap I p)

Notice that, because we must model patches as bijections, we could not have circum-
vented the issue of subtracting from zero by modeling ! add1 as saturating subtraction.
Indeed, saturating subtraction is not a Bijection Nat Nat, because it sends both 1 and
0 to the same value.

6.2 Contractibility

As usual, paths in R are automatically endowed with identities, inverses, and composition.
Nevertheless, doc n = doc n+1 has no more elements than we put in—all paths of that
type are homotopic to add1 n. Intuitively, this is because ! (add1 n) goes “backwards”
from doc n+1 to doc n, so any sequence of compositions yielding a path doc n = doc
n+1 must have one more add1 n than ! (add1 n). For example,

ZU064-05-FPR paper 30 September 2016 14:20

26 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

add1 n ◦ ! (add1 n) ◦ add1 n : doc n = doc n+1

but groupoid laws equate this to add1 n. Hence, the type doc n = doc m uniquely deter-
mines a patch, up to homotopy.

To prove this result, we first show that R is contractible. It suffices to exhibit a point in R,
the center of contraction, together with a proof that every point in R is equal to the center:

(x : R) � center = x

In this case, we choose the center to be doc 0. We prove R is contractible by R-induction,
which means that it suffices to show that, for any number n, we can construct a path doc 0
= doc n by composing add1 with itself n times, and moreover, that this choice of paths
itself respects paths in R.

toPath : (n : Nat) � doc 0 = doc n
toPath 0 = refl
toPath (n+1) = add1 n ◦ toPath n

isContr : (x : R) � doc 0 = x
isContr (doc n) = toPath n
apd isContr (add1 n) = refl

: PathOver (λx � doc 0 = x) (add1 n) (toPath n) (toPath n+1)

This last PathOver simplifies to

add1 n ◦ toPath n = toPath n+1

which, once we expand the definition of toPath n+1, is true by refl.
Since R is contractible, it is also a mere proposition, and so by Lemma 3.11.10 of the

HoTT Book (2013), all its identity types are contractible. In particular, this implies doc n
= doc m has exactly one patch up to homotopy.

We can prove this fact directly, using the action on paths of isContr,

apd isContr : {a b : R} (p : a = b)
� PathOver (λx � doc 0 = x) p

(isContr a) (isContr b)

If we specialize this to paths doc n = doc m, we get

apd isContr {doc n} {doc m}
: (p : doc n = doc m) � PathOver (λx � doc 0 = x) p (toPath n) (toPath m)

This PathOver reduces to p ◦ toPath n = toPath m, yielding

apd isContr {doc n} {doc m} : (p : doc n = doc m) � p ◦ toPath n = toPath m

Precomposing both sides with ! (toPath n), we obtain a proof that all paths p : doc
n = doc m are homotopic to toPath m ◦ ! (toPath n):

(p : doc n = doc m) � p = toPath m ◦ ! (toPath n)

Patch Histories A major feature of version control is the ability to clone a repository, a
process which duplicates a repository by downloading its complete history of patches, and
replaying that history in order to rebuild the current contents of that repository.

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 27

In the patch theory of Section 4, a complete sequence of patches is a term p : num =
num, and replaying that sequence of patches amounts to applying interp p, which is a
Bijection Int Int, to some starting Int.

In contrast, a sequence of patches in R has type doc n = doc m for some n and m,
and is only applicable to a repository state classified by doc n. To define the concept of a
complete history in this patch theory, we must fix some common domain context to which
all repositories are initialized. We choose doc 0, because no generating patches have it as
a codomain, so it is in a sense the “least patched” repository state. Then a complete patch
in R is a term of type:

Σ(n : Nat). doc 0 = doc n

Since doc 0 = doc n is contractible, pairs of this type are uniquely determined by their
first projection. In other words, the type of complete patches is in bijection with Nat—
patches applicable to doc 0 are characterized precisely by the index n of their codomain
context doc n. One direction of this bijection is fst; the other is toPath.

Just as in Section 4.2 we used a bijection between num = num and Int to obtain a
derived induction principle for num = num, here we can use a bijection between complete
patches and Nat, which we call the type of complete histories, to give a derived induction
principle for complete patches.

It is not an accident that the indexing type of the patch contexts is in bijection with
complete patches—this is automatically the case in any contractible patch theory, for the
same reason as above. In fact, the patch theories we consider in Sections 7 and 8 are both
contractible, because (as in the present theory) their patch laws and patch applicability
require fairly precise invariants about the repository’s contents.

7 A Patch Theory with Laws and Multiple Contexts

In this section, we consider a patch theory with both patch laws and multiple patch contexts,
as a simple setting to consider the issues that will arise in the more realistic patch theory
of Section 8.

The previous patch theory we considered had one primitive patch applicable to each
patch context. Here, we allow exactly two primitive patches at each patch context, add
true and add false, which correspond to incrementing one of two natural numbers
constituting the repository. We expect patch histories for this theory to be sequences of
booleans indicating the sequence of applied patches, so we index the contexts by Bool
Lists.

space R’ : Type where
-- point constructor (patch context):
doc : Bool List � R’
-- path constructor (basic patch):
add : (x : Bool) {xs : Bool List} � doc xs = doc x::xs

Notice that the codomain of the add x patch is its domain history xs prepended with x.
This patch theory can be visualized as a tree, where the nodes are histories and the paths

ZU064-05-FPR paper 30 September 2016 14:20

28 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

label the edges; for example:

doc []

doc [t] doc [f]

add t add f

In such a semantics, any two patches commute: incrementing the same number twice
commutes trivially, and incrementing each number in turn commutes because the numbers
are independent.

We would like to capture this fact in R’ by adding patch laws saying that any two patches
commute. As in Section 5, this patch law should take the form of a path-between-path
constructor in R’. But the patch contexts prevent us from equating differing sequences of
patches—they do not even have the same type:

add true ◦ add false : doc xs = doc true::(false::xs)
add false ◦ add true : doc xs = doc false::(true::xs)

7.1 Definition of Patches

The issue is that the Bool List patch histories record the exact sequence of patches
applied; we cannot equate any sequences of patches without equating the corresponding
patch histories. In other words, for patch composition to commute, we must quotient the
Bool Lists by permutation.

This yields the type of boolean multisets, lists quotiented by “Ex”change of adjacent
elements, defined as the following quotient higher inductive type:

space MS : Type where
-- point constructors:
[] : MS
:: : Bool � MS � MS
-- path constructor:
Ex : (x y : Bool) (xs : MS) � x::(y::xs) = y::(x::xs)

Then we can index patch contexts by MSes, rather than Bool Lists. As before, patches
prepend a boolean to the context.

space R : Type where
-- point constructor (patch context):
doc : MS � R
-- path constructor (basic patch):
add : (x : Bool) {xs : MS} � doc xs = doc x::xs
-- pathover-between-path constructor (patch law):
ex : (x y : Bool) {xs : MS} �

PathOver (λs � doc xs = doc s) (Ex x y xs)
(add x ◦ add y) (add y ◦ add x)

The ex constructor implements the patch law stating that patch composition is commu-
tative. (ex x y) is a PathOver because although the codomains of (add x ◦ add y)
and (add y ◦ add x) differ—they are doc x::(y::xs) and doc y::(x::xs)—their
codomains’ indices are equal as multisets by virtue of Ex x y xs.

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 29

7.2 Interpreter

As we saw in Section 6, it is not possible to model patches incrementing a natural number
as bijections on Nat. By analogy with the interpretation discussed there, we would like to
interpret doc xs as the type AtLeast t × AtLeast f, where t (resp., f) is the number
of times true (resp., false) occurs in xs. First, we write a function to compute these
numbers:

replay : MS � Nat × Nat

replay [] = (0, 0)
replay (true::xs) = ((fst (replay xs))+1, snd (replay xs))
replay (false::xs) = (fst (replay xs), (snd (replay xs))+1)
ap replay (Ex true true xs) = refl
ap replay (Ex true false xs) = refl
ap replay (Ex false true xs) = refl
ap replay (Ex false false xs) = refl

The action of replay on Ex x y xs is a proof that replay respects the equations on
multisets. In each case, this is immediately true by unfolding the definition of replay; for
example:

ap replay (Ex true false xs) = refl :
((fst (replay xs))+1, (snd (replay xs))+1)

= ((fst (replay xs))+1, (snd (replay xs))+1)

Then we define the interpretation:

I : R � Type
I (doc xs) = AtLeast (fst (replay xs)) × AtLeast (snd (replay xs))
ap I (add true) = ua incr-t
ap I (add false) = ua incr-f
apdP (ap I) (ex x y) = GOAL7.1

This interpretation sends add true xs to the bijection which increments the first number
and leaves the second the same, and vice versa. This map is a bijection because it is
a bijection in each coordinate, between AtLeast t and AtLeast t+1 in the first, and
between AtLeast f and itself in the second.

pairBiject : Bijection A B � Bijection A’ B’ � Bijection (A × A’) (B × B’)
pairBiject (f,g,p,q) (f’,g’,p’,q’) =

(λ(x,x’) � (f x,f’ x’), λ(y,y’) � (g x,g’ x’), ...)

incr-t : {t f : Nat} �
Bijection (AtLeast t × AtLeast f) (AtLeast t+1 × AtLeast f)

incr-t = pairBiject (increment t) reflb
incr-f : {t f : Nat} �

Bijection (AtLeast t × AtLeast f) (AtLeast t × AtLeast f+1)
incr-f = pairBiject reflb (increment f)

In the last clause of I, apdP is the action of a function on a PathOver, unlike apd, which
is the action of a function on an ordinary path. (If we define PathOvers as ordinary paths
using coe, as described in Section 2.3, then this is just apd.) The goal GOAL7.1 says that

ZU064-05-FPR paper 30 September 2016 14:20

30 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

I respects the (ex x y) PathOver; Unfolding the definitions, this amounts to saying that
I sends the commuting triangle ex x y to a commuting triangle:

doc xs

doc x::y::xs doc y::x::xs

add x ◦ add y add y ◦ add x

ap doc (Ex x y xs)

ex x y

I(doc xs)

I(doc x::y::xs) I(doc y::x::xs)

ap I (add x ◦ add y) ap I (add y ◦ add x)

GOAL7.1

I

As we saw above, replay respects the Ex x y xs law exactly, so I does as well. Thus,
GOAL7.1 amounts to a proof that ap I sends (add x ◦ add y) and (add y ◦ add x)
to equal paths in the universe, that is, they induce equal bijections.

Since multisets are quotiented by permutations, the Nat × Nat representation com-
puted by replay above is in fact isomorphic to MS. Nevertheless, we opt to use the MS
representation to index the patch contexts, since it precisely captures the structure of com-
posable sequences of primitive patches in R. Specifically, the elements of MS maintain an
explicit log of the order in which patches were applied, even though the paths in MS identify
those logs which differ only by permutation. In contrast, such a log is not maintained at all
by the Nat × Nat representation.

7.3 Contractibility

In a patch theory with multiple contexts, the type of merge is somewhat complicated. If we
restrict merge to operate on complete patches, then it takes a span of patches with domain
doc [], and returns a cospan reuniting them:

doc []

doc s1 doc s2

doc s

p1 p2

q1 q2

We can write the type of merge as follows:

merge : {s1 s2 : MS} (doc [] = doc s1) � (doc [] = doc s2) �
Σ(s : MS). (doc s1 = doc s) × (doc s2 = doc s)

In Section 4, the implementation of merge was straightforward, but proving merge laws
required a derived induction principle obtained from the bijection between patches and
Ints. In this section, we will establish a bijection between complete patches and patch
histories (here, boolean multisets) not only for the purpose of proving merge laws, but also
defining merge itself.

Namely, if R is contractible, then

Σ(s : MS). doc [] = doc s

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 31

is isomorphic to MS, because the patch itself is uniquely determined by s. Let toPath be the
function which computes a complete patch from a MS, and cod its inverse, which projects
the codomain index from a complete patch. (It is possible to define cod without directly
projecting from the type index, as we will see in Section 8.3.) Then to define merge on
complete patches, it would suffice to define a merge operation on histories,

mergeH : MS � MS � MS

and coerce complete patches to and from MS:

merge p1 p2 =
let s = mergeH (cod p1) (cod p2)
in (s, ((toPath s) ◦ !p1, (toPath s) ◦ !p2))

In the remainder of this section, we will put aside the issue of defining mergeH, and
instead establish the bijection described above, by proving that R is contractible. This result
is somewhat difficult; in fact, one might even expect R to have non-trivial loops of the form:

doc []

doc [x] doc [y]

doc [x,y] doc [y,x]

add x add y

add y add x

The bottom of this loop, ap doc (Ex x y []), originates from an equation in MS. The
patch law ex x y trivializes this loop by equating the two sides, over the bottom path.

The first ingredient of the proof is toPath, which computes a path doc [] = doc s
for each multiset s.

toPath : (xs : MS) � doc [] = doc xs
toPath [] = refl
toPath (x::xs) = add x ◦ toPath xs
apd toPath (Ex x y xs) = GOAL7.2

: PathOver (λs � doc [] = doc s) (Ex x y xs)
(toPath (x::(y::xs))) (toPath (y::(x::xs)))

Here, GOAL7.2 stands for a proof that toPath respects equality of multisets. After expand-
ing the definition of toPath, the goal GOAL7.2 states that the following triangle commutes:

doc []

doc x::y::xs doc y::x::xs

add x ◦ add y ◦ toPath xs add y ◦ add x ◦ toPath xs

ap doc (Ex x y xs)

GOAL7.2

Cancelling the two instances of toPath xs, we get

ap doc (Ex x y xs) ◦ add x ◦ add y = add y ◦ add x

But this is exactly the type of ex x y, once we expand the PathOver. This completes our
definition of toPath.

Morally, this subgoal—that toPath respects the path constructor of MS—verifies that ex
fills loops of the form discussed above. Indeed,

ZU064-05-FPR paper 30 September 2016 14:20

32 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

apd toPath : {xs ys : MS} (p : xs = ys)
� PathOver (λs � doc [] = doc s) p (toPath xs) (toPath ys)

is a proof that, whenever xs and ys are equal multisets, then there is a commuting triangle
bounded by toPath xs, doc xs = doc ys, and toPath ys.

Now we can prove that R is contractible with center doc []:

isContr : (r : R) � doc [] = r
isContr (doc xs) = toPath xs
apd isContr (add x {xs}) = refl

: PathOver (λs � doc [] = s) (add x) (toPath xs) (toPath x::xs)
apdP (apd isContr) (ex x y) = GOAL7.3

The second clause demands that isContr respect add x. This is a trivial commuting
triangle, because toPath x::xs is by definition exactly add x ◦ toPath xs. In the
third clause, GOAL7.3 involves paths over paths-over-paths; essentially, it proves that apd
isContr, which assigns a commuting triangle to every path, respects the patch law ex x
y, itself a commuting triangle.

The fact that a path-indexed commuting triangle respects another commuting triangle is
a commuting tetrahedron. Below we have drawn an unfolded version of that tetrahedron; to
assemble it, join all three points labeled doc [] as the apex. The interior of the tetrahedron
proves that the top-left and top-right triangles are correlated by the base of the tetrahedron
(the middle triangle). We have a machine-checked proof that this tetrahedron commutes7

but will not discuss it here.

doc [] doc []

doc []

doc xs

doc x::y::xs doc y::x::xs

ad
d
x
◦
ad
d
y add

y
◦
add

x

ap doc (Ex x y xs)

toPath xs

toPath
x::y::xs

toPath xs

to
Pa
th

y:
:x
::
xs

toPath
x::y::xs to

Pa
th

y:
:x
::
xs

ex x y

refl refl

GOAL7.2

8 A Patch Theory for Text Files

Finally, we consider a patch theory for a text file (a vector of Strings), with primitive
patches to insert a string s as the lth line (ADD s@l), or remove the lth line (RM l).

7 https://github.com/dlicata335/hott-agda/blob/homotopical-patch-theory-paper/
programming/PatchWithHistories.agda

https://github.com/dlicata335/hott-agda/blob/homotopical-patch-theory-paper/programming/PatchWithHistories.agda
https://github.com/dlicata335/hott-agda/blob/homotopical-patch-theory-paper/programming/PatchWithHistories.agda

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 33

The patch contexts for this theory must at least specify the number of lines in the file,
since patches only apply when the specified line number exists—one cannot apply RM l
to a file with fewer than l lines. Thus, our first cut at defining this patch theory is to index
patch contexts by the file length, and define RM l as a path from doc n+1 to doc n, for
any n+1 at least l.

Unfortunately, patches in such a theory cannot be interpreted as bijections between n-
line files, since deleting a line is not a Bijection (Vec n+1 String) (Vec n String).
(An inverse to this function would have to invent the contents of the deleted line.)

Instead, we will index the patch contexts by histories, in this case, sequences of ADD s@l
and RM l for which all the line numbers are within bounds. That is, file lengths determine
which histories are well-formed, and histories determine which patches are well-formed!

8.1 Definition of Patches

Let History m n be the type of patch histories which, given m-line files, produce n-line
files. As with MS in Section 7, we define History m n as a quotient higher inductive type,
and equate sequences of patches effecting the same change on files. For example, two
ADDitions in sequence can be commuted by shifting their line numbers appropriately.

space History : Nat � Nat � Type where
-- point constructors:
[] : {m : Nat} � History m m
ADD_@_::_ : {m n : Nat} (s : String) (l : Fin n+1) �

History m n � History m n+1
RM_::_ : {m n : Nat} (l : Fin n+1) �

History m n+1 � History m n
-- path constructors:
ADD-ADD-< : {m n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)

(s1 s2 : String) (h : History m n) � l1 < l2 �
(ADD s2@l2 :: ADD s1@l1 :: h)

= (ADD s1@l1 :: ADD s2@(l2-1) :: h)
ADD-ADD-≥ : {n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)

(s1 s2 : String) (h : History m n) � l1 ≥ l2 �
(ADD s2@l2 :: ADD s1@l1 :: h)

= (ADD s1@(l1+1)) :: ADD s2@l2 :: h)

(For the sake of clarity we have omitted some coercions between different Fin types.) To
simplify the code, we have also omitted path constructors commuting ADD-RM, RM-ADD, and
RM-RM, which can be defined in exactly the same fashion.

We index patch contexts by complete histories, which in this case are elements of
History 0 n, since they are applicable to empty (length-0) files.

space R : Type where
-- point constructor (patch context):
doc : {n : Nat} � History 0 n � R

-- path constructors (basic patches):
addP : {n : Nat} (s : String) (l : Fin n+1)

(h : History 0 n) � doc h = doc (ADD s@l :: h)
rmP : {n : Nat} (l : Fin n+1)

ZU064-05-FPR paper 30 September 2016 14:20

34 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

(h : History 0 n+1) � doc h = doc (RM l :: h)

-- pathover-between-path constructors (patch laws):
addP-addP-< : {n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)

(s1 s2 : String) (h : History 0 n) � (pf : l1 < l2) �
PathOver (λx � doc h = doc x) (ADD-ADD-< l1 l2 s1 s2 h pf)

(addP s2 l2 ◦ addP s1 l1)
(addP s1 l1 ◦ addP s2 (l2-1))

addP-addP-≥ : {n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)
(s1 s2 : String) (h : History 0 n) � (pf : l1 ≥ l2) �
PathOver (λx � doc h = doc x) (ADD-ADD-≥ l1 l2 s1 s2 h pf)

(addP s2 l2 ◦ addP s1 l1)
(addP s1 (l1+1) ◦ addP s2 l2)

As in Section 7, the final two constructors stipulate patch laws, over the equations in
History 0 n to which they correspond. For example, when l1 < l2, the first patch law
equates the patches

addP s2 l2 ◦ addP s1 l1 : doc h = doc (ADD s2@l2 :: ADD s1@l1 :: h)
addP s1 l1 ◦ addP s2 (l2-1) : doc h = doc (ADD s1@l1 :: ADD s2@(l2-1) :: h)

in the type family λx � doc h = doc x, over the fact that the ADD-ADD-< law equates
their codomains’ histories in History 0 n+2.

8.2 Interpreter

Our previous examples of patch contexts determined bounds on the repository’s contents—
in Section 6, doc n classified numbers at least n, and in Section 7, doc xs classified pairs
of numbers pairwise at least replay xs.

In contrast, a History 0 n precisely classifies the repository’s contents—exactly one
text file can be obtained by applying the specified sequence of patches to the empty file. So
while in Section 6 doc n is interpreted as the type of numbers AtLeast n, here we will
interpret doc h as the type of text files exactly replay h—that is, as the singleton type
S(replay h). (Recall from Section 5.3 that for x:A, we define S(x) as Σ(y:A).x = y.)

To compute the file specified by a complete history, we must first implement the primi-
tive patches as functions add and rm on vectors of Strings.

add : {n : Nat} (s : String) (l : Fin n+1) � Vec String n � Vec String n+1
rm : {n : Nat} (l : Fin n+1) � Vec String n+1 � Vec String n

We use add and rm to define replay as follows:

replay : {n : Nat} � History 0 n � Vec String n

replay [] = []
replay (ADD s@l :: h) = add s l (replay h)
replay (RM l :: h) = rm l (replay h)

ap replay (ADD-ADD-< l1 l2 s1 s2 h pf) =
GOAL8.1 : add s2 l2 (add s1 l1 (replay h))

= add s1 l1 (add s2 (l2-1) (replay h))
ap replay (ADD-ADD-≥ l1 l2 s1 s2 h pf) =

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 35

GOAL8.2 : add s2 l2 (add s1 l1 (replay h))
= add s1 l1+1 (add s2 l2 (replay h))

Because we have laws equating some histories, GOAL8.1 and GOAL8.2 demand that replay
sends equal histories to equal files, which amounts to showing that add satisfies the same
laws as ADD.

If we interpret doc h as the type S(replay h), then we must interpret a patch p : doc
h = doc h’ as a bijection between S(replay h) and S(replay h’). We can restrict
any function f : A � B to a function between singleton types, as follows:

toSingleton : (f : A � B) � {M : A} � S(M) � S(f M)
toSingleton f (x,p) = (f x, ap f p)

We model ADD s@l as toSingleton (add s l), and RM l as toSingleton (rm l).
These functions are automatically bijections, because any function between contractible
types is a bijection. (Name the proof of this fact singleBiject.) Putting it all together,
we interpret R as follows:

I : R � Type

I (doc h) = S(replay h)
ap I (addP s l h) = ua (singleBiject (toSingleton (add s l)))
ap I (rmP l h) = ua (singleBiject (toSingleton (rm l)))
apdP (ap I) (addP-addP-< l1 l2 s1 s2 h pf) = <replay respects this law>
apdP (ap I) (addP-addP-≥ l1 l2 s1 s2 h pf) = <replay respects this law>

Typechecking ap I (addP s l h) requires unfolding the definition of replay: it
must have type Bijection S(replay h) S(replay (ADD s@l :: h)), but by defi-
nition, the latter type is S(add s l (replay h)).

Then, as before, we can derive the interpretation of patches:

interp : {n1 n2 : Nat} {h1 : History 0 n1}
{h2 : History 0 n2} � (doc h1 = doc h2)
� Bijection (I (doc h1)) (I (doc h2))

interp p = coeBiject (ap I p)

such that interp (addP s l h) is add s l, and interp (rmP l h) is rm l.

8.3 Histories

Because R’s patch contexts uniquely determine file contents, the type of a complete patch
p : doc [] = doc h fully specifies its effect! This type information is quite large, and
moreover redundant at runtime, in the sense that interp can compute the effect of p
without reference to the type indices. Thus, we hope it is possible to discard the patch
contexts at runtime, through some erasure mechanism.

What if, instead of computing the file created by p, we want to compute the complete
history h it corresponds to (without simply projecting h from the type)? Notably, we must
compute this information from p itself and not interp p, because we cannot inspect the
intensions of functions S(file) � S(file’).

We can do so by means of an alternate interpretation of R—just as we computed changes
induced on repositories by interpreting patch contexts as singleton files, we can compute
the changes induced on complete histories by interpreting each doc h as S(h):

ZU064-05-FPR paper 30 September 2016 14:20

36 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

I’ : R � Type

I’ (doc h) = S(h)
ap I’ (addP s l h) =

ua (singleBiject (toSingleton (λh � ADD s@l :: h))
ap I’ (rmP l h) =

ua (singleBiject (toSingleton (λh � RM l :: h)))
apdP (ap I’) (addP-addP-< l1 l2 s1 s2 h p) =

ADD-ADD-< l1 l2 s1 s2 h p
apdP (ap I’) (addP-addP-≥ l1 l2 s1 s2 h p) =

ADD-ADD-≥ l1 l2 s1 s2 h p

interpH : doc h = doc h’ � S(h) � S(h’)
interpH p = coeBiject (ap I’ p)

As desired, interpH takes a patch p : doc h = doc h’ to a function which, when
applied to the unique element of S(h), produces the unique element of S(h’). In particular,
if p is a complete patch, then fst (interpH p ([],refl)) produces the history h’. As
with interp, interpH proceeds recursively on the structure of p, without relying on its
type information.

8.4 Merge

As in Section 7.3, we restrict the merge operation to complete patches:

merge : {n1 n2 : Nat} {h1 : History 0 n1} {h2 : History 0 n2}
(doc [] = doc h1) � (doc [] = doc h2) �
Σ(n’ : Nat). Σ(h’ : History 0 n’).

(doc h1 = doc h’) × (doc h2 = doc h’)

Such a function reconciles all pairs of complete patches. This may seem impossible, as
some patches ordinarily give rise to merge conflicts: for example, given addP s 0 and
addP s’ 0, neither [s,s’] nor [s’,s] is obviously preferable. However, we can always
merge conflicting patches by simply undoing both patches. (Of course, a user-friendly
interface would ideally recognize this situation and instead prompt the user to manually
resolve the conflict.)

In the remainder of this section, we will show how a merge operation mergeH for
complete histories, and a proof mergeH satisfies the merge laws, suffices to define a merge
satisfying the merge laws. Merging complete histories can be accomplished with standard
techniques; for example, using replay to convert complete histories into files, defining
merging directly on files, and computing a reconciliation which creates the merged file.

To define merge, we use interpH to convert complete patches to complete histories,
then compute the merge of those histories with mergeH. The merge of two complete
histories h1 and h2 is a single history h’ which has each as a prefix—that is, h’ reconciles
h1 and h2 because it is an extension of both. Thus mergeH has the type:

mergeH : {n1 n2 : Nat}
(h1 : History 0 n1) (h2 : History 0 n2) �
Σ(n’ : Nat). Σ(h’ : History 0 n’).

Extension h1 h’ × Extension h2 h’

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 37

where Extension h h’ is a proof that h’ extends h:

Extension : {n1 n2 : Nat} � History 0 n1
� History 0 n2 � Type

Extension h h’ = Σ(s : History n1 n2). h ++ s = h’

Here, ++ : History n1 n2 � History n2 n3 � History n1 n3 appends two his-
tories.

We complete the definition of merge by converting extensions back into paths. First, we
convert complete histories to complete patches in the usual way:

toPath : {n : Nat} (h : History 0 n) � doc [] = doc h
toPath [] = refl
toPath (ADD s@l :: h’) = addP s l ◦ toPath h’
toPath (RM l :: h’) = rmP l ◦ toPath h’

Then, we convert an Extension h h’ into a path by composing paths from doc h to doc
[] and back to doc h’:

extToPath : {n n’ : Nat}
{h : History 0 n} {h’ : History 0 n’} �
Extension h h’ � doc h = doc h’

extToPath _ = (toPath h’) ◦ !(toPath h)

extToPath completely ignores the extension itself; intuitively, this is possible because
extensions are more informative than paths. Putting all the pieces together, we define merge
as follows:

merge p1 p2 =
let (n’,(h’,(e1,e2))) =

mergeH (interpH p1 []) (interpH p2 [])
in (n’, (h’, (extToPath e1, extToPath e2)))

We can prove the merge laws by observing that R is contractible, because then

Σ(n : Nat). Σ(h : History 0 n). doc [] = doc h

is equivalent to

Σ(n : Nat). History 0 n

and univalence dictates that all constructions respect equivalence of types. Therefore, since
complete histories are equivalent to complete patches, not only does defining a merge on
the former automatically result in a merge on the latter, but the merge laws on the former
automatically imply the merge laws on the latter. We have a machine-checked proof8 that
(a generalized form of) R is contractible, but will not discuss the details here.

But since we manually constructed merge from mergeH without an appeal to univalence,
we will finish the story by proving the merge laws for merge manually as well. For this
patch theory, the merge laws are:

8 https://github.com/dlicata335/hott-agda/blob/homotopical-patch-theory-paper/
programming/PatchWithHistories2.agda

https://github.com/dlicata335/hott-agda/blob/homotopical-patch-theory-paper/programming/PatchWithHistories2.agda
https://github.com/dlicata335/hott-agda/blob/homotopical-patch-theory-paper/programming/PatchWithHistories2.agda

ZU064-05-FPR paper 30 September 2016 14:20

38 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

reconcile : {n n1 n2 : Nat} {h : History 0 n}
{h1 : History 0 n1} {h2 : History 0 n2}

� (p1 : doc [] = doc h1) � (p2 : doc [] = doc h2)
� (q1 : doc h1 = doc h) � (q2 : doc h2 = doc h)
� merge p1 p2 = (n, (h, (q1, q2)))
� q1 ◦ p1 = q2 ◦ p2

symmetric : {n n1 n2 : Nat} {h : History 0 n}
{h1 : History 0 n1} {h2 : History 0 n2}

� (p1 : doc [] = doc h1) � (p2 : doc [] = doc h2)
� (q1 : doc h1 = doc h) � (q2 : doc h2 = doc h)
� merge p1 p2 = (n, (h, (q1, q2)))
� merge p2 p1 = (n, (h, (q2, q1)))

The reconcile law follows from the contractibility of R—the type of merge specifies
that p1, p2, q1, and q2 form a square, and by contractibility, all squares in R commute. The
symmetric law is not automatic, but rather requires mergeH to be symmetric as well:

symmetricH : {n n1 n2 : Nat} {h : History 0 n}
� (h1 : History 0 n1) (h2 : History 0 n2)
� {e1 : Extension h1 h} {e2 : Extension h2 h’}
� mergeH h1 h2 = (n, (h, (e1, e2)))
� mergeH h2 h1 = (n, (h, (e2, e1)))

The first two components of merge p1 p2 and merge p2 p1 are equal since symmetricH
says the same of mergeH; the last two components, a pair of paths, are swapped be-
cause they depend only on the last two components of the corresponding mergeHs, which
symmetricH ensures are also swapped.

9 Related Work

The first version control system designed around a theory of patches was Darcs (Roundy,
2005; Darcs Project, 2013). For each patch Darcs computes a (one- or two-sided) inverse
patch, and for each composable pair of patches it attempts to compute a composable pair
known as its commutation. The commutation of the composable pair (f ,g) is another
composable pair (g′, f ′) such that f ′ ◦ g′ is parallel to g ◦ f and has the same effect on
a repository state. Additionally, g′ has the same effect as g but in the domain context of
f , and f ′ has the same effect as f but in the codomain context of g′. This commutation
operation is expected to obey certain laws. Not all patches may be commuted in this way,
but those that can may be arbitrarily reordered. Darcs uses this ability to invert and reorder
patches to implement operations such as merging and the “cherry-picking” of non-terminal
patches from other repositories.

Several efforts have been made to formalize Darcs’s patch theory by making precise the
laws that patch inverses and commutations should satisfy (Sittampalam, 2005; Roundy,
2009). Dagit (2009) has explored using features of the rich (but not fully dependent) type
system of the programming language Haskell to enforce some properties of Darcs’s patch
theory statically. Closely related to Darcs is an experimental version control system called
Camp (Commute And Merge Patches) (Camp Project, 2010), which aims to have its patch
theory as well as its implementation verified in the proof assistant Coq (Lynagh, 2012).

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 39

Jacobson (2009) explores the interpretation of patch theories similar to that of Darcs
in inverse semigroups. These are sets equipped with an associative binary operation such
that for each element s there is a unique s∗ with ss∗s = s and s∗ss∗ = s∗. Sets with partial
bijections form an inverse semigroup that is used to interpret patch theories. The partiality
of the maps is used to interpret the domain of applicability of patches, which are thus
invertible where they are defined. There is an equivalence between the categories of in-
verse semigroups and of inductive groupoids, so Jacobson’s semantics can be recast in the
language of groupoids.

A different approach to interpreting patch theories using mathematical structures results
from dropping the requirement of patch invertibility. In this case, patch theories may
be interpreted in categories, using the pushout construction to interpret merging. This
approach has been explored by Houston (2012) and by Mimram & Di Giusto (2013). The
latter explicitly construct the category that is the free finite conservative cocompletion of a
given category of contexts and patches, where the adjoined pushouts signal merge conflicts.
The Pijul project (Pijul Project, 2015) is currently developing a distributed version control
system based on these ideas.

Löh, Swierstra and Leijen (2007) use the algebra of sets to characterize the repository
states associated to a patch and predicate logic to characterize the effects of patch appli-
cation. This approach is simplified and extended by Swierstra & Löh (2014) using the
framework of separation logic (Reynolds, 2002), where Hoare triples are used to encode
patch applicability and effects and the frame rule is used to specify the part of a repository
state that is affected by a patch. This facilitates reasoning about when patches may be
composed and when they are independent and thus may be reordered or merged.

10 Conclusion

In this paper we have defined a number of patch theories within homotopy type theory. We
represent patch theories as higher inductive types whose points represent patch contexts,
whose paths represent patches between patch contexts, and whose paths between paths
represent patch laws. This representation automatically endows patches with a groupoid
structure—identity, composition, and inverses, with the corresponding laws—for free, so
defining a patch theory requires specifying only the patch contexts, generating patches, and
domain-specific patch laws.

We implement a patch theory by mapping it into a univalent universe, thereby sending
patch contexts to sets of repositories, and patches to bijections between those sets. Be-
cause all functions in homotopy type theory respect paths, such implementations—indeed,
all patch operations, like optimizations or merges—automatically satisfy the patch laws.
Defining implementations in this way makes essential use of the univalence axiom, which
adds a path in the universe for each bijection between sets.

It is possible to use the same guiding principles to define patch theories in a dependently-
typed programming language lacking univalence and higher inductive types. In Remarks 4.1
and 4.2, we illustrated this for a very simple example. One way to replicate this construction
for other patch theories would be to copy and paste the general operations (constructors
for identity, inverse, and composition, and their laws) between datatypes; a better way
would be to use the abstraction mechanisms already present in dependently-typed program-

ZU064-05-FPR paper 30 September 2016 14:20

40 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

ming languages to avoid the repetition. For example, one could define a generic datatype
of patches, parametrized by a signature describing the repository contexts, the primitive
patches, and the equations specific to the primitive patches; the generic datatype would
provide identity, inverse, composition, and their laws. Then, to mimic the higher inductive
eliminators, one would need a type family identifying other types that have the structure
necessary to map into them from a patch theory—a type equipped with a binary relation
that has identity, inverse, and composition operations, satisfying the necessary laws.

However, in more abstract terms, such a type family amounts to defining groupoids
inside of type theory—the datatype of patches is a construction of the free groupoid on
some generators for objects (repository contexts), morphisms (patches), and equations
between morphisms (patch laws); and the mapping-out principle for patch theories is the
universal property of free groupoids. These constructions are built into homotopy type
theory—all types are groupoids, and higher inductive types specify free ones—so we
can avoid both explicitly defining free groupoids, and proving that types we map those
groupoids into are equipped with a groupoid structure.

A second advantage is that, when programming inside a language where types denote
groupoids, many types and terms are simpler than when programming with a construc-
tion of groupoids inside of a host language. For example, to refer to the product of two
groupoids or the functor category, we need only refer to the product and function types,
and to write maps between groupoids, we can use λ -terms that simultaneously specify the
action both on objects and on morphisms, rather than defining functors by a combinator
library (which is effectively in de Bruijn form).

On the other hand, the disadvantage of working with a language of groupoids is that
some definitions and operations may not fit naturally into such a framework. For example,
modeling patch theories as groupoids forces all patches to have full inverses. While patches
typically have post-inverses which undo them, they typically do not have pre-inverses:
you cannot delete a file before it is created! In order to represent patches as paths, we
had to either choose a theory whose patches were already invertible (Sections 4 and 5),
or else restrict the types of patches in order to make them invertible (Sections 6, 7, and
8). One solution to this problem is to take the more explicit approach sketched above by
using a library for categories inside of homotopy type theory (see Chapter 9 of the HoTT
Book (2013)). Another is to scale the language-based approach we studied here to non-
invertible patches by using a directed homotopy type theory, following the preliminary
work by Licata & Harper (2011).

Another difficulty with modeling patches as paths in a higher inductive type arises when
one wants to case-analyze paths to define functions like merging. Unlike in the explicit
approach sketched above, where the type of morphisms in a groupoid is a separate type with
its own elimination principles, neither path induction nor the induction principle for the
patch theory apply directly. Instead, we need to prove derived induction principles, often
by establishing bijections with ordinary inductive types (Licata & Shulman, 2013; Univa-
lent Foundations Program, 2013). While this showcases how to apply homotopy-theoretic
techniques to programming problems, it is generally more challenging than defining maps
out of either ordinary inductive types or quotient types.

Our representation of patch theories requires points, paths, and homotopies; reasoning
about these patch theories can require paths between homotopies (e.g., the commuting

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 41

tetrahedron in Section 7). Because we only use three dimensions of structure, it might be
advantageous to work inside a dimensionally-truncated homotopy type theory (Licata &
Harper, 2012), or explicitly truncate all types (as discussed in Section 5.3).

The computational interpretation of homotopy type theory remains open, but we believe
that programming applications will lend insight into the problem. Our work has led us
to consider a model of computation in which some steps are propositional equalities,
rather than restricting reduction to a subrelation of definitional equality. However, not
all propositional equalities are computational—the patch optimizer in Section 5.3 illus-
trates that propositionally equal terms can compute differently, even though no predicate
within homotopy type theory can distinguish them. This is analogous to how, in a non-
homotopical type theory with function extensionality (Altenkirch et al., 2007), extension-
ally equal functions may compute in different ways on the same argument. Accordingly,
functions may contain meaningful computational content even when they map into or out
of contractible types.

Acknowledgments We thank the participants of the 2013 IFIP WG 2.8 meeting for helpful
conversations about this work, and the anonymous reviewers of ICFP 2014 and this journal
for their helpful feedback on this article.

References

Abbott, Michael, Altenkirch, Thorsten, & Ghani, Neil. (2005). Containers: constructing strictly
positive types. Theoretic computer science, 342(1), 3–27.

Aczel, Peter. (1977). The strength of Martin-Löf’s intuitionistic type theory with one universe. Pages
1–32 of: Proceedings of the symposium on mathematical logic, Oulu, 1974. Dept. of Philosophy,
University of Helsinki Report No.2.

Altenkirch, Thorsten. (2014). Containers in homotopy type theory. Talk at Mathematical Structures
of Computation, Lyon.

Altenkirch, Thorsten, & Kaposi, Ambrus. (2015). Towards cubical type theory. Preprint. Available
from http://akaposi.bitbucket.org/nominal.pdf.

Altenkirch, Thorsten, McBride, Conor, & Swierstra, Wouter. (2007). Observational equality, now.
Programming languages meets program verification workshop.

Awodey, S., & Warren, M. (2009). Homotopy theoretic models of identity types. Mathematical
proceedings of the cambridge philosophical society.

Barras, Bruno, Coquand, Thierry, & Huber, Simon. (2015). A generalization of the Takeuti–Gandy
interpretation. Mathematical structures in computer science, 25, 1071–1099.

Bezem, Marc, Coquand, Thierry, & Huber, Simon. 2013 (September). A model of type theory in
cubical sets. Preprint.

Camp Project. (2010). http://projects.haskell.org/camp/.
Cavallo, Evan. (2015). Synthetic cohomology in homotopy type theory. M.Phil. thesis, Carnegie

Mellon University.
Cohen, Cyril, Coquand, Thierry, Huber, Simon, & Mörtberg, Anders. (2016). Cubical type theory: a

constructive interpretation of the univalence axiom. Preprint. Available from http://www.cse.
chalmers.se/~coquand/cubicaltt.pdf.

Constable, Robert L., Allen, Stuart F., Bromley, H. M., Cleaveland, W. R., Cremer, J. F., Harper,
R. W., Howe, Douglas J., Knoblock, T. B., Mendler, N. P., Panangaden, P., Sasaki, James T., &

http://akaposi.bitbucket.org/nominal.pdf
http://projects.haskell.org/camp/
http://www.cse.chalmers.se/~coquand/cubicaltt.pdf
http://www.cse.chalmers.se/~coquand/cubicaltt.pdf

ZU064-05-FPR paper 30 September 2016 14:20

42 Carlo Angiuli, Edward Morehouse, Daniel R. Licata, and Robert Harper

Smith, Scott F. (1986). Implementing mathematics with the NuPRL proof development system.
Prentice Hall.

Coq Development Team. (2015). The Coq proof assistant reference manual, version 8.5. INRIA.
Available from http://coq.inria.fr/.

Dagit, Jason. (2009). Type-correct changes—a safe approach to version control implementation. MS
Thesis.

Darcs Project. (2013). http://darcs.net/.
Gambino, Nicola, & Garner, Richard. (2008). The identity type weak factorisation system.

Theoretical computer science, 409(3), 94–109.
Garner, Richard. (2009). Two-dimensional models of type theory. Mathematical structures in

computer science, 19(4), 687–736.
Hofmann, Martin, & Streicher, Thomas. (1998). The groupoid interpretation of type theory. Twenty-

five years of constructive type theory. Oxford University Press.
Hou, Kuen-Bang (Favonia). (2014). Covering spaces in homotopy type theory. Talk at TYPES 2014.
Houston, Robin. (2012). On editing text. http://bosker.wordpress.com/2012/05/10/
on-editing-text/.

Jacobson, Judah. (2009). A formalization of Darcs patch theory using inverse semigroups. Available
from ftp://ftp.math.ucla.edu/pub/camreport/cam09-83.pdf.

Kapulkin, Chris, Lumsdaine, Peter LeFanu, & Voevodsky, Vladimir. (2012). The simplicial model of
univalent foundations. arXiv:1211.2851.

Kleene, S. C. (1945). On the interpretation of intuitionistic number theory. The journal of symbolic
logic, 10(4), 109–124.

Kreisel, Georg. (1959). Interpretation of analysis by means of constructive functionals of finite
types. Pages 101–128 of: Heyting, Arend (ed), Constructivity in mathematics. Amsterdam, North-
Holland Pub. Co.

Lawvere, F. William. (1963). Functorial semantics of algebraic theories and some algebraic
problems in the context of functorial semantics of algebraic theories. Ph.D. thesis, Columbia
University.

Licata, Daniel R., & Brunerie, Guillaume. (2013). πn(Sn) in homotopy type theory. Certified
programs and proofs.

Licata, Daniel R., & Brunerie, Guillaume. (2015). A cubical approach to synthetic homotopy theory.
IEEE Symposium on Logic in Computer Science.

Licata, Daniel R., & Finster, Eric. (2014). Eilenberg–MacLane spaces in homotopy type theory.
IEEE Symposium on Logic in Computer Science.

Licata, Daniel R., & Harper, Robert. (2011). 2-dimensional directed type theory. Mathematical
foundations of programming semantics (mfps).

Licata, Daniel R., & Harper, Robert. (2012). Canonicity for 2-dimensional type theory. ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages.

Licata, Daniel R., & Shulman, Michael. (2013). Calculating the fundamental group of the circle in
homotopy type theory. IEEE Symposium on Logic in Computer Science.

Löh, Andres, Swierstra, Wouter, & Leijen, Daan. (2007). A principled approach to version control.
preprint. Available from http://www.andres-loeh.de/VersionControl.html.

Lumsdaine, Peter LeFanu. (2009). Weak ω-categories from intensional type theory. International
Conference on Typed Lambda Calculi and Applications.

Lumsdaine, Peter LeFanu. 2011 (April). Higher inductive types: a tour
of the menagerie. http://homotopytypetheory.org/2011/04/24/
higher-inductive-types-a-tour-of-the-menagerie/.

Lumsdaine, Peter LeFanu, & Shulman, Michael. (2013). Higher inductive types. In preparation.

http://coq.inria.fr/
http://darcs.net/
http://bosker.wordpress.com/2012/05/10/on-editing-text/
http://bosker.wordpress.com/2012/05/10/on-editing-text/
ftp://ftp.math.ucla.edu/pub/camreport/cam09-83.pdf
http://www.andres-loeh.de/VersionControl.html
http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/
http://homotopytypetheory.org/2011/04/24/higher-inductive-types-a-tour-of-the-menagerie/

ZU064-05-FPR paper 30 September 2016 14:20

Homotopical Patch Theory 43

Lynagh, Ian. 2012 (January). Camp patch theory. Available from http://projects.haskell.
org/camp/files/theory.pdf.

McBride, Conor. (2000). Dependently typed functional programs and their proofs. Ph.D. thesis,
University of Edinburgh.

Mimram, Samuel, & Di Giusto, Cinzia. (2013). A categorical theory of patches. Electronic notes in
theoretical computer science, 298, 283–307.

Nordström, B., Peterson, K., & Smith, J.M. (1990). Programming in martin-löf’s type theory, an
introduction. Clarendon Press.

Norell, Ulf. (2007). Towards a practical programming language based on dependent type theory.
Ph.D. thesis, Chalmers University of Technology.

Pijul Project. (2015). https://pijul.org/.
Polonsky, Andrew. (2015). Internalization of extensional equality. Available from http://arxiv.
org/abs/1401.1148.

Reynolds, John C. (2002). Separation logic: A logic for shared mutable data structures. IEEE
Symposium on Logic in Computer Science.

Roundy, David. (2005). Darcs: Distributed version management in haskell. ACM SIGPLAN
Workshop on Haskell.

Roundy, David. 2009 (April). Theory of patches. Available from http://www.cs.tufts.edu/
comp/150GIT/archive/david-roundy/theory-patches-2009.pdf.

Shulman, Michael. 2011 (April). Homotopy type theory VI: higher inductive types. http://golem.
ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html.

Shulman, Michael. (2013). Univalence for inverse diagrams, oplax limits, and gluing, and homotopy
canonicity. arXiv:1203.3253.

Sittampalam, Ganesh et al. (2005). Some properties of darcs patch theory. Available from http:
//urchin.earth.li/darcs/ganesh/darcs-patch-theory/theory/formal.pdf.

Swierstra, Wouter, & Löh, Andres. (2014). The semantics of version control. ACM International
Symposium on New ideas, New Paradigms, and Reflections on Programming and Software.

Univalent Foundations Program. (2013). Homotopy type theory: Univalent foundations of
mathematics. Available from homotopytypetheory.org/book.

van den Berg, Benno, & Garner, Richard. (2011). Types are weak ω-groupoids. Proceedings of the
london mathematical society, 102(2), 370–394.

Voevodsky, Vladimir. (2006). A very short note on homotopy λ -calculus. Unpublished, September,
1–7.

Warren, Michael A. (2008). Homotopy theoretic aspects of constructive type theory. Ph.D. thesis,
Carnegie Mellon University.

http://projects.haskell.org/camp/files/theory.pdf
http://projects.haskell.org/camp/files/theory.pdf
https://pijul.org/
http://arxiv.org/abs/1401.1148
http://arxiv.org/abs/1401.1148
http://www.cs.tufts.edu/comp/150GIT/archive/david-roundy/theory-patches-2009.pdf
http://www.cs.tufts.edu/comp/150GIT/archive/david-roundy/theory-patches-2009.pdf
http://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html
http://golem.ph.utexas.edu/category/2011/04/homotopy_type_theory_vi.html
http://urchin.earth.li/darcs/ganesh/darcs-patch-theory/theory/formal.pdf
http://urchin.earth.li/darcs/ganesh/darcs-patch-theory/theory/formal.pdf
homotopytypetheory.org/book

	Introduction
	Basics of Homotopy Type Theory
	Paths
	Univalence
	Paths Over Paths
	Higher Inductive Types
	Computation

	Patch Theory in Homotopy Type Theory
	Patch Theories as Higher Inductive Types
	Interpretations of Patch Theories
	Merging

	An Elementary Patch Theory
	Interpreter
	Merge

	A Patch Theory with Laws
	Definition of Patches
	Interpreter
	Optimizer

	A Patch Theory with Multiple Contexts
	Interpreter
	Contractibility

	A Patch Theory with Laws and Multiple Contexts
	Definition of Patches
	Interpreter
	Contractibility

	A Patch Theory for Text Files
	Definition of Patches
	Interpreter
	Histories
	Merge

	Related Work
	Conclusion
	References

